Morphogenesis and Differentiation of the vertebrate CNS



Group leader: Paola Bovolenta Nicolao,
Scientific Staff: Florencia Cavodeassi Madarro, Maria Pilar Esteve Pastor,
Postdoctoral Fellows: Raquel Marcos Ferreras, Luisa Sánchez Arcones ,
Graduate Students: Marcos Cardozo, Inmaculada Crespo, Lara Amaya Duran Trio, Francisco Javier Nieto López, Javier Rueda Carrasco,
Technical Assistance: Mª Jesus Martín Bermejo, África Sandonis, Noemí Tabaneras,



Research Summary

Our research aims at defining the molecular mechanisms that control the early development of the vertebrate nervous system. Our main objectives are: (1) understanding the molecular mechanisms that allow the progressive specification of a common progenitor cell into different cell types and (2) studying how some of these mechanisms are reused at later stages of development to establish proper connections among neurons. We believe that the vertebrate eye is one of the most fascinating systems to address these questions since its main components (the neural retina, the pigmented epithelium and the optic nerve) have very different morphological and functional properties, despite their common origin from a single primordium, the optic vesicle. Our experimental approach is multidisciplinary and involves the use of several techniques (biochemistry, cell and molecular biology, experimental embryology, transgenesis, gain-or loss-of function studies) applied to different model organisms: mouse, chick and teleost fishes. Specifically, we are studying the transcriptional network that control optic vesicle specification, analysing the promoters of three crucial transcription factors (Six3, Six6 and Otx2) and searching for the their down-stream target genes. We are also investigating the contribution of SFRP1, BMP7, SHH and FGF, secreted molecules that activate different signalling pathways, to optic vesicle morphogenesis and retina neurogenesis, including their role in the control of retina ganglion cell growth cone movements.

Besides expanding our knowledge in development neurobiology, understanding eye development has the potential added value of pinpointing to the causes of specific ocular pathologies, most notably congenital eye malformation and neurodegenerative diseases. In this respect, we are interested in understanding the molecular basis of congenital retinal dystrophies (RDs), a collection of very frequent neurodegenerative diseases with a heterogeneous genetic origin that lead to a progressive loss of visual acuity, culminating in blindness. RDs are characterized by photoreceptor cell death, a process that begins in a restricted group of cells and thereafter extends to the entire retina. We are testing the hypothesis that this behavior may be caused by the activity of signaling pathways that, independently of the genetic origin of the disease, contribute to cell death spreading. The analysis of the components of these possible pathways may lead to the identification of compounds capable of interfering with the propagation of retina degeneration.






Fig. 1. DiI (red) and DiO (green) labelling of cells located in the median anterior neural border of a chick embryo at gastrula stage.

Fig. 2. Section of an E13 mouse embryo stained with antibodies that recognise differentiating Retinal Ganglion cells.





Fig. 3. Zebrafish embryo with a chimera eye composed of host and EGFP-labelled donor cells. l, lens; r, retina.

Fig. 4. Flat-mount of a mouse embryonic retina electroporated with an EGFP plasmid to label developing retina ganglion cells
 
Fig. 5. Double staining of St21 medaka-fish embryo hybridised in toto with retinal (Rx3 red) and telencephalic (Fgf8, brown) specific markers.

Publications

 
Beccari L., Marco-Ferreres, R and Bovolenta P. (2012) The logic of Gene Regulatory Networks in early vertebrate forebrain patterning. Mech. Dev. (doi: http://dx.doi.org/10.1016/j.mod.)
 
Knecht, E., Criado O, Aguado C, Gayarre J, Duran-Trio L , Garcia-Cabrero A.M. Vernia S, San Millán B., Heredia M., Romá-Mateo C., Mouron S., Domínguez M., Navarro C., Serratosa JM, Sanchez M, Sanz P., Bovolenta P., and Rodriguez de Cordoba S. (2012) Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora Disease. Autophagy (in press)
 
Sánchez-Arrones, L.*, Cardoso, M.*, Nieto, F. and Bovolenta P. (2012) Boc and Cdo: two trans-membrane proteins implicated in cell cell communuication. Series of Molecules on Focus; IJBCB in press). * Equally contributing.
 
Sebastián-SerranoA, SandonisA, Cardozo M, Rodríguez-Tornos, F.M., BovolentaP. and Nieto M. (2012) Pax6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1. PlosOne (in press)
 
Sánchez-Arrones. L, Stern, C.D., Bovolenta, P. and Puelles, L. (2012) Sharpening of the anterior neural border in the chick by rostral endoderm signalling. Development139, 1034-1044  
 
Criado O*, Aguado C*, Gayarre J *, Duran-Trio L *, Garcia-Cabrero A.M.* Vernia S*, San Millán B., Heredia M., Romá-Mateo C., Mouron S., Domínguez M., Navarro C., Serratosa JM, Sanchez M, Sanz P., Bovolenta P., Knecht E and Rodriguez de Cordoba S. (2012) Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. (Hum. Mol. Gen. PMID: 22186026)
 
Bovolenta P. and Sánchez-Arrones L. (2012) Shh goes multidirectional in axon guidance. Cell Res. (N&V, comentario invitado) doi: 10.1038/cr.2011.
 
Beccari L., Conte I*, Cisneros E.* and Bovolenta P. (2012) Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development139, 151-164.
 
Esteve P, Sandonìs A, Ibañez C, Shimono A, Guerrero I, Bovolenta P.(2011) Secreted frizzled-related proteins are required for Wnt/β-catenin signalling activation in the vertebrate optic cup. Development 138(19):4179-84.
 
Esteve, P., Sandonìs A., Cardozo M., MalapeiraJ., Ibañez C., CrespoI, Gonzalez-GarciaS,MarcosS., ToribioML, ArribasJ., ShimonoA., GuerreroI.and Bovolenta P. (2011) SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat. Neurosci. 14, 562–569.
 
Sánchez-Camacho, C. Cano JA, Ocaña, I, Alcantara S, and Bovolenta P. (2011) Appropriate Bmp7 levels are required for the timely differentiation of the guide post cells that support corpus callosum formation. Dev Neurobiol. 2011 May;71(5):337-50. doi: 10.1002/dneu.20865.
 
Conte, I., Carrella, S., Avellino, R. KaraliM., Marco-Ferreres, R., BovolentaP. and Banfi S. (2010) miR-204 is required for lens and retinal development via Meis2 targeting. Proc.Nat. Aca.Sci.USA 107:15491-15496.
 
Conte I.* Marco-Ferreres, R.*, Beccari. L., Cisneros E., Ruiz JM, Tabanera N. and Bovolenta P. (2010) Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6. Development 137, 2307-2317. *co-first authors
 
Cubelos, B. Sebastián-Serrano, A., BeccariL., Calcagnotto M.E., CisnerosE., KimS, DopazoA., Alvarez-Dolado M., RedondoJ.M., BovolentaP., WalshCA, and NietoM. (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology and synapse formation of the upper layer neurons of the cortex. Neuron, 66, 523–535. (Selected in The Faculty of 1000)
 
Sánchez-Camacho C. and Bovolenta P. (2009) Emerging mechanisms in morphogen-mediated axon guidance. BioEssays 31, 1013-1025.
 
Bovolenta P. and Cisneros, E. (2009). Retinitis Pigmentosa: cone photoreceptors starving to death. Nat. Neurosci. 12, 5-7 (N&V)
 
Sánchez-Camacho C. and Bovolenta P. (2008) Autonomous and non autonomous Shh signalling mediate the in vivo growth and guidance of mouse retina ganglion cell axons. Development, 135, 3531-3540 (cover caption article and Highlighs  “In this issue”)
 
Lopez-Rios, J* Esteve, P*, Ruiz JM and Bovolenta P. (2008) The netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonises their activity in the anterior neural plate. Neural Development, 3: 19.
 
Bovolenta P., Esteve P., Ruiz J.M., Cisneros E. and Lopez-Rios, J. (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121: 737-746.
 
Conte I. and Bovolenta P. (2007) Comprehensive characterization of the cis-regulatory code responsible for the spatio-temporal expression of olSix3.2 in the developing medaka forebrain. Genome Biol.  8: R137, 1-17.
 
Bovolenta P. Rodríguez, J., Esteve, P. (2006) Frizzled/Ryk mediated signalling in axon guidance. Development 133, 4399-4408.
 
Morcillo J., Martinez-Morales, J.R, Trousse, F., Fermin Y., Sowden J. and Bovolenta P. (2006). Proper patterning of the optic fissure requires the sequential activity of Bmp7 and Shh. Development 133, 3179-3190. (Highlighs in “In this issue Development” and in Nat. Rev. Neurosci. 2006, 7, 684; Selected in The Faculty of 1000)
 
Esteve P and Bovolenta P. (2006) Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr. Opin. Neurobiol. 16, 1-7.
 
Rodríguez, J., Esteve, P., Weinl, C., Ruiz, J.M., Fermin Y., Trousse, F., Dwivedy A, HoltC.E. and Bovolenta P. (2005)SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci. 8, 1301-1309. (News and Views 8, 1281-1282)
 
Martínez-Morales J.R., Rodrigo I., and Bovolenta P. (2004) Eye development: a view from the pigmented epithelium. BioEssays 26, 766-777.
 
Martinez-Morales, J.R, Del Bene, F., Nica G., Hammerschmidt M., Bovolenta P.* and Wittbrodt, J.* (2005) Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 8, 565-574. *co-senior authors (Selected in F1000)
 
Martínez-MoralesJ.R., Dolez V., RodrigoI., Zaccharin; R., Leconte L., Bovolenta P*. and Saule S*. (2003) OTX2 activates the molecular network underlying retina pigment epithelium differentiation.  J. Biol. Chem. 278, 21721-21731.  *co-senior authors
 
Esteve P., Trousse F., Rodriguez J. and Bovolenta P. (2003). SFRP1 modulates retina cell differentiation through a bcatenin-independent mechanism. J. Cell Sci. 116, 2471-2481 (Highlights in “In this issue J. Cell Sci” and in Development).
 
Lopez-Rios J., Tessmar K, Wittbrodt J. and Bovolenta P. (2003) Six3 and Six6 activity is modulated by members of the groucho family. Development 130, 185-195          
                                            
Martí E. and Bovolenta P. (2002). Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 25, 89-96.
 
Trousse F., Marti E., GrussP., TorresM. and Bovolenta P. (2001) Control of retinal ganglion cell axon growth: a new role for Shh. Development128, 3927-3936. (cover caption article). Highlight in: Nat. Rev. Neurosc. 2001, 2, 853
 
Martinez-MoralesJR, Signore M, Acampora D, Simeone A. and Bovolenta P. (2001). Otx genes are required for tissue specification in the developing eye. Development 128, 2019-2030.
 
Trousse F., Esteve P. and Bovolenta P. (2001) BMP4 mediates apoptotic cell death and proliferation in the chick optic cup. J. Neurosci. 21, 1292-1301.
 
 

Awards

Premio a la Investigación “Fundaluce”. 2009.

FENS Comunication/Publication Commitee. 2009-presente

Scientific Commitee, Telethon Combatti la Distrofia Muscolare e altre Malattie Genetiche, Italy 2006-2009.

Selección “LS4–Neurosciences” European Research Council (ERC) Starting Grants. (2007-2010)


Doctoral Theses

1. Los proteoglicanos como moduladores de guía axonal. Isabel Fernaud-Espinosa. Facultad de Ciencias, Universidad Complutense de Madrid. Octubre, 1996. Sobresaliente Cum Laude

2. Expresión, función e interacciones moleculares de Six6 y Six3 durante la morfogénesis del ojo en vertebrados. Javier López-Ríos Moreno. Facultad de Ciencias, Universidad Autónoma de Madrid. Julio, 2002. Sobresaliente Cum Laude

3. Modulación de la diferenciación y de la guía axonal en células ganglionares de la retina por SFRP1. Josana Rodríguez Sánchez. Facultad de Ciencias, Universidad Autónoma de Madrid. Febrero de 2005. - Sobresaliente Cum Laude

4. Estudio de la función de BMP7 en la formación del disco óptico. Julián Morcillo García. Facultad de Ciencias, Universidad Autónoma de Madrid. 16 Septiembre, 2008. Sobresaliente Cum Laude

5. Estudio de la función de Sfrp5 en el desarrollo del ojo y del techo óptico en el pez medaka. José Maria Ruiz. Facultad de Medicina, Universidad Autónoma de Madrid. Lectura en 17 de Abril de 2009. Sobresaliente Cum Laude.

6. Estudio del control transcripcional de los genes Six en vertebrados. Leonardo Beccari. Facultad de Ciencias, Universidad Autónoma de Madrid. Lectura 19 de Mayo 2011. Sobresaliente Cum Laude.

7. Generation of a medaka model for the Microphthalmia with linear skin lesion syndrome. Alessia Indrieri. European School of Molecular Medicine, Napoli, Italia. External co-supervisor (Supervisor: Prof. Brunella Franco). Lectura 14 Abril, 2011

8. Análisis de la función de Boc y Cdo durante el establecimiento de las conexiones retino-tectales en peces teleósteos. Marcos Cardozo. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo.

9. Función de Sfrp1 y Sfrp2 en el desarrollo de la corteza cerebral. Inmaculada Crespo. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo

10. Estudio de la función de la señalización mediada por Shh durante la formación de las vías visuales en vertebrados. Francisco Nieto. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo.

11. Caracterización del Sistema Nervioso Central en modelos animales de enfermedad de Lafora. Lara Trio Duran. Facultad de Ciencias, Universidad Autónoma de Madrid. Co-Dirección: Prof. S. Rodríguez de Córdoba, CIB-CSIC. En desarrollo.


Patents

“Efecto mitógeno de Sonic hedgehog (Shh) sobre precursores de oligodendrocitos y su uso en enfermedades desmielinizantes”. nº 200600697.

“Método de diagnóstico de la enfermedad de Alzheimer que emplea Sfrp1 como biomarcador". nº 201130560.



C/Nicolás Cabrera 1 Campus de la Universidad Autónoma de Madrid.. 28049-Madrid .
Teléfono: +34-911964401 , Fax: +34-911964420 , e-mail: institucional@cbm.uam.es