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Summary

The strains of Thermus thermophilus that contain
the nitrate respiration conjugative element (NCE)
replace their aerobic respiratory chain by an anaero-
bic counterpart made of the Nrc-NADH dehydroge-
nase and the Nar-nitrate reductase in response to
nitrate and oxygen depletion. This replacement
depends on DnrS and DnrT, two homologues to
sensory transcription factors encoded in a bicis-
tronic operon by the NCE. DnrS is an oxygen-
sensitive protein required in vivo to activate
transcription on its own dnr promoter and on that of
the nar operon, but not required for the expression
of the nrc operon. In contrast, DnrT is required for
the transcription of these three operons and also for
the repression of nqo, the operon that encodes the
major respiratory NADH dehydrogenase expressed
during aerobic growth. Thermophilic in vitro assays
revealed that low DnrT concentrations allows the
recruitment of the T. thermophilus RNA polymerase
sA holoenzyme to the nrc promoter and its transcrip-
tion, whereas higher DnrT concentrations are
required to repress transcription on the nqo pro-
moter. In conclusion, our data show a complex auto-
inducible mechanism by which DnrT functions as
the transcriptional switch that allows the NCE to
take the control of the respiratory metabolism of its
host during adaptation to anaerobic growth.

Introduction

In many prokaryotes, nitrogen oxides substitute for
oxygen during denitrification, a series of four consecutive
steps (NO3

–: NO2
–: NO: N2O: N2) catalysed by the respec-

tive reductases (Zumft, 1997; Richardson et al., 2001).
For a few of them, a hierarchical regulatory mechanism
has been shown that co-ordinates the expression of each
of these reductases in response to two specific environ-
mental signals: (i) oxygen depletion and (ii) presence
of the appropriate nitrogen oxide. In most denitrifiers,
oxygen depletion is detected through a [4Fe-4S] iron–
sulphur redox centre located at the N-terminal domain of
a CRP (cAMP receptor protein)-like transcription factor,
similar to the Escherichia coli FNR (fumarate and nitrate
reductase regulatory protein) (Korner et al., 2003). In the
presence of oxygen, the iron–sulphur centre is oxidized,
causing the factor to monomerize and become inactive
(Crack et al., 2004). In the absence of oxygen, the reduc-
tion of the [4Fe-4S] centre leads to protein dimerization
through a central a-helix, allowing the protein to bind to a
palindromic sequence known as anaerobox through its
C-terminal helix–turn–helix (HTH) motif (Korner et al.,
2003). Also, there are examples of FNR and other CRP-
like factors acting as transcriptional repressors at specific
promoters (Busby and Ebright, 1999; Korner et al., 2003).

Additionally, the presence of an appropriate nitrogen
oxide must be detected by specific sensory proteins.
Nitrate is usually detected by a membrane sensor (NarX)
that phosphorylates a response regulator (NarL), which
then binds to specific sequences upstream from the tran-
scription start site of the corresponding nitrate reductase
operons (Stewart, 1993; 2003). However, in organisms
like Paracoccus pantotrophus, which lacks NarL homo-
logues, a member of the CRP family of regulators named
NarR detects nitrate through a yet unknown mechanism
(Wood et al., 2001). Interestingly, the other main signal in
denitrification, nitric oxide (NO), is also detected through a
subgroup of the CRP family known as Dnr (Vollack et al.,
1999; Korner et al., 2003).

The genus Thermus sp. belongs to one of the oldest
lineages of the bacterial phylogenetic tree (Hartmann
et al., 1989), and most of its isolates show an overall
aerobic nature. The extreme thermophilic Thermus
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thermophilus shows the same overall aerobic nature of
the genus, but there are isolates of this species that carry
out the first step of the denitrification pathway, growing
anaerobically with nitrate and excreting nitrite as the end-
product (Ramirez-Arcos et al., 1998a), and even others
that fulfil a complete denitrification, reducing nitrite to N2

as final product (Rainey and da Costa, 2001). This ability
is encoded within a > 30 kb DNA fragment that can be
transferred by conjugation to aerobic strains of the same
species through an Hfr-like mechanism, allowing the new
hosts to grow as facultative anaerobes (Ramirez-Arcos
et al., 1998b). This nitrate respiration conjugative element
(NCE) encodes two main operons, named nar and nrc.
The nar operon codes for a thermophilic membrane
nitrate reductase (Nar), which contains a periplasmic cyto-
chrome c as a fourth subunit in addition to homologues to
the NarG, NarH and NarI enzyme subunits found in other
bacteria (Zafra et al., 2005). The nrc operon codes for a
new class of respiratory NADH dehydrogenase (NDH)
made of four subunits, in contrast to the 14- to 16-meric
multimer that constitutes the type I NDH, or to the mono-
meric type II NDH found in most bacteria (Cava et al.,
2004). Phylogenetic comparisons of the amino acid
sequences of Nar and Nrc subunits are in agreement with
the 16S RNA-based phylogeny of the genus, and also
suggest an ancient origin for both enzymes (Philippot,
2002; Cava et al., 2004). When a NCE-carrying
T. thermophilus strain grows in a nitrate-rich medium
under laboratory conditions, depletion of oxygen either
due to consumption by the increasing population or
experimentally induced leads to the apparently simulta-
neous induction of the nar and nrc operons (Ramirez-
Arcos et al., 1998a; Cava et al., 2004). Interestingly,
transcription of the nqo operon, which encodes the
aerobic type I NDH of the host, is concomitantly repressed
(Cava et al., 2004). Therefore, the T. thermophilus strains
carrying NCE replace not just the final electron acceptor
enzyme, but the whole respiratory chain, during transition
to anaerobic growth with nitrate. In contrast,
menaquinone-8 is common to both respiratory processes
(Cava et al., 2004).

In a previous work we observed that the nitrate- and
anoxia-dependent transcription of the nar operon pro-
moter required the presence of the NCE (Moreno et al.,
2003), and therefore we concluded that the regulatory
factors required for the respiratory chain replacement in
response to these signals were encoded within this trans-
ferable element. Here we identify a bicistronic operon
(dnr) in the NCE that encodes DnrS and DnrT (RegA and
RegB in Cava and Berenguer, 2006), two homologues to
bacterial transcription and sensory factors. The develop-
ment of new promoter-probe and expression vectors
allow us to show here that both proteins are required for
the expression of the operons of the NCE when the cells

grow in a medium with nitrate under low oxygen
concentrations. We find that DnrS is an oxygen-sensitive
protein required for the expression of the nar and dnr
operons under anaerobic conditions, whereas DnrT is the
central regulatory factor required not only to activate the
transcription from all the NCE operons but also to repress
the transcription from the nqo operon. To our knowledge,
this is the first time in which a single thermophilic tran-
scription factor is shown to activate and to repress in vitro
transcription by the RNA polymerase of T. thermophilus
on two different promoters. Its dual role as transcription
activator of the NCE operons and as repressor of the
chromosomically encoded Nqo points to DnrT as the
central switching mechanism by which the NCE controls
the respiratory metabolism of its host during adaptation to
anaerobic growth.

Results

NCE encodes two homologues of bacterial
transcription factors

Sequence analysis of the NCE revealed the presence of
two genes, preliminarily named regA and regB (Cava and
Berenguer, 2006), encoded in the DNA region that sepa-
rates the nar and the nrc operons (EMBL Accession
No. AM161043) (Fig. 1A). The proximity of the coding
sequences of both genes (4 bp) and the presence of a
Rho-independent transcription terminator downstream of
the translation stop codon of regB suggested that they
form a bicistronic operon. This was confirmed by reverse
transcription polymerase chain reaction (RT-PCR) assays
on RNA isolated from cells incubated for 4 h under anoxic
conditions with nitrate (Experimental procedures), in
which the expected 1440 bp amplification fragment was
obtained with forward primer 1, specific for regA, and
reverse primer 3, specific for regB (Fig. 1B). In contrast,
the use of reverse primer 4, which hybridizes downstream
the putative transcription terminator, was unsuccessful.

The amino acid sequence motifs and main similarities
to proteins from the databank of the hypothetical proteins
encoded by regA and regB are also shown in Fig. 1. The
regA gene encodes a 467-amino-acid-long protein, with a
theoretical size of 52.6 kDa. A search for sequence motifs
at the NCBI server revealed the presence of an N-terminal
(positions 1–120) GAF (cGMP-specific and -stimulated
phosphodiesterases, Anabaenaadenylate cyclases and
E. coli FhlA) domain usually involved in signal detection in
several proteins (Aravind and Ponting, 1997; Galperin,
2004). There is an additional BTAD domain (bacterial
transcriptional activator domain) shared by all the
members of the DNRI/REDD/AFSR family of transcrip-
tion regulators involved in secondary metabolism in
Streptomyces sp. and related Actinobacteria (Yeats et al.,
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2003). This domain structure suggests a putative role as a
signal-sensitive transcription factor for the hypothetical
RegA protein. This protein will be named DnrS there-
after to avoid confusion with proteins from other
microorganisms.

On the other hand, regB encodes a 217-amino-acid-
long protein with a theoretical size of 24.8 kDa. Its coding
sequence starts with a GTG codon. Sequence compari-
sons revealed that RegB belongs to the CRP family of
transcription activators, sharing the C-terminal HTH DNA-
binding motif common to all the family members, and also
showing an N-terminal nucleotide-binding motif, like the
CRP protein. More precisely, the sequence alignment with
members of this family (Fig. S1) revealed the highest per-
centages of identity with members of the Dnr subgroup of
this CRP family, most of which are implicated in signal
transduction of NO (DnrE, DnrD) or nitrate (NarR) pres-
ence in denitrifying Proteobacteria (Korner et al., 2003).
Due to these similarities and to the role in nitrate respira-
tion that we describe in this article, we renamed regB as
dnrT. As all its closest homologues, DnrT lacks the four
cysteine residues that in members of the CRP family, like
the FNR protein, are responsible for the detection of
oxygen through a 4Fe-4S cluster. Interestingly, the
sequence of the HTH motif of DnrT keeps the highly
conserved residues E182, S185 and R186, which interact
directly with the DNA sequence target in most proteins of
the CRP family (Korner et al., 2003) (Fig. S1).

DnrS and DnrT are induced in T. thermophilus during
anaerobic respiration

To be sure that hypothetical DnrS and DnrT proteins were
actually synthesized in T. thermophilus, their respective
coding genes were cloned, overexpressed in E. coli,
and specific polyclonal rabbit antisera were prepared for
each of them (Experimental procedures). These antisera
showed similar sensitivities for their respective proteins in
parallel Western blot assays (Fig. S2A), thus making it
possible to compare DnrS and DnrT amounts by their
respective signals.

As shown in Fig. 2A, specific signals for proteins of the
sizes expected for DnrS and DnrT were immunodetected
in the soluble fraction of the facultative wild-type strain
NAR1 (lane 3) treated for 4 h under anoxic conditions with
nitrate (An conditions). Parallel immunodetection of NarG
(Ramirez-Arcos et al., 1998a) and NrcD (Cava et al.,
2004) were carried out on the corresponding membrane
fractions to confirm the expression of the Nar and Nrc
respiratory enzymes under these conditions. As expected,
none of these proteins (DnrT, DnrS, NrcD and NarG) were
detected in the aerobic strain T. thermophilus HB27 (lane
1) subjected to the same treatment, but they did in its
HB27c derivative (lane 2) that carries the NCE element
(Ramirez-Arcos et al., 1998b). Interestingly, when the fac-
ultative wild-type strain was grown aerobically (A), a low
amount of DnrT was detected by Western blot (lane 3),

Fig. 1. The dnr operon.
A. Scheme of the dnr operon, and the relative position of the nrc and part of the nar operons that surrounds it. Dotted lines on the top indicate
the roles of DnrS and DnrT as transcription activators of the indicated NCE promoters shown in this article.
B. RT-PCR assay with the indicated primers pairs on total RNA isolated from cells grown for 4 h under nitrate/anoxia conditions. Primers used
were regANde1 (1), o27-77 (2), dnrTstop (3) and o27-81 (4), and their approximate annealing positions are indicated in (A).
C. Scheme of the positions of the domains identified in DnrS and DnrT.
Details are described in the text.
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and longer exposure times allowed its detection also in
the HB27c strain. Detection of NrcD followed the same
pattern. In contrast, detection of DnrS under aerobic con-
ditions was not evident unless larger protein amounts and
longer exposure times were used. The final conclusion
from these experiments was that DnrT and DnrS are not

hypothetical but actual proteins, which are expressed in
T. thermophilus at low levels during aerobic growth but
induced during anaerobic growth with nitrate. Having in
mind that the respective antisera show similar sensitivities
for immunodetection of both proteins by Western blot
(Fig. S2A), and that the two proteins are translated form a
single mRNA (Fig. 1B), these data suggest for DnrS either
lower translation efficiency or a less stable character than
for its co-expressed DnrT counterpart.

DnrS and DnrT are required for anaerobic growth

Null mutants of dnrT and dnrS were isolated (Experimen-
tal procedures). Due to their operon nature and to the
absence of a transcription terminator at the end of the kat
gene, the DnrT protein was constitutively expressed in
two independent dnrS::kat mutants (Fig. 2B, lanes M1
and M2), in such a way that similar levels of DnrT were
detected in cultures grown aerobically (A) as in those
treated for 4 h with nitrate under anoxic conditions (An).
By comparison, the DnrT protein was expressed by the
wild-type strain under aerobic conditions at such a low
level that it was not detected under the exposure time
shown in this figure. On the other hand, no polar effect of
the dnrT null mutation on the expression of the DnrS
protein was expected. In fact, expression of DnrS required
the presence of DnrT (see below).

Parallel growth experiments revealed that neither the
dnrS nor the dnrT null mutant was able to grow under
complete anaerobic conditions with nitrate (not shown).
As all the nrc::kat null mutants are still able to grow
anaerobically with nitrate (Cava et al., 2004), the inability
of the dnrS and the dnrT null mutants to grow under such
conditions suggests that the expression of DnrT and DnrS
is required for the synthesis of the nitrate reductase, the
only component of the respiratory machinery which is fully
required for anaerobic growth (Ramirez-Arcos et al.,
1998a). This was confirmed by the results of Fig. 2C and
D, which show that NarG was not expressed in any of the
mutants under inducing conditions. However, there was a
clear difference between both mutants with respect to the
expression of NrcD: whereas the dnrT null mutant was
unable to express it (Fig. 2D), in the dnrS::kat mutant the
NrcD protein was expressed anaerobically (Fig. 2C) and
even during the aerobic growth (Fig. 2B). It is then note-
worthy that the expression of NrcD is concomitant to that
of DnrT, which is expressed constitutively in dnrS::kat
mutants. A final conclusion from these assays was that
the DnrS protein was not expressed in the dnrT null
mutant, supporting that DnrT is also required for the
expression of its own operon (Fig. 2D).

To confirm these results, complementation experiments
of each mutant were carried out. For this we used
pWUR112/77-1 (pWUR thereafter) derivatives, which

Fig. 2. Requirement of the dnr operon genes for the expression of
the Nar and Nrc respiratory complexes.
A. Total proteins from the T. thermophilus strains HB27 (1), HB27c
(2) and NAR1 (3), grown either aerobically (A) or after 4 h under
nitrate/anoxia conditions (An), were subjected to parallel Western
blots to detect DnrT, DnrS, NrcD and NarG.
B. Western blots showing DnrT and NrcD were carried out on
cultures of the NAR1 wild-type strain (Wt) and in two independent
dnrS::kat null mutants (M1 and M2) grown either aerobically (A) or
treated for 4 h under nitrate/anoxia-inducing conditions (An). Note
the constitutive expression of DnrT and NrcD under aerobic
conditions in the mutants.
C. Western blots to detect DnrT, DnrS, NrcD and NarG on
nitrate/anoxia induced cultures of the wild-type NAR1 strain (Wt) or
of a dnrS::kat null mutant (dnrS).
D. Western blots to detect DnrT, DnrS, NrcD and NarG were
carried out as in (C) on the wild-type strain and on the dnrT null
mutant.
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confer a thermostable resistance to Bleomycin (Brouns
et al., 2005) that is compatible with the resistance to
Kanamycin of the dnrS and dnrT null mutants (this work).
As shown in Fig. 3A, transformation of the wild-type strain
or the dnrT null mutant with pWURdnrT results in consti-
tutive expression of DnrT during aerobic growth (A). Con-
comitant to the constitutive synthesis of DnrT, the NrcD
protein is strongly expressed. In contrast, constitutive
expression of DnrT does not guarantee the expression of
NarG in the wild type or in the dnrT null mutant during
aerobic growth, and its synthesis was still dependent on
oxygen depletion and nitrate presence (An).

On the other hand, constitutive expression of DnrS from
pWURdnrS in a dnrS::kat genetic background, in which
DnrT is also constitutively expressed (Fig. S2B), does not
result in the expression of significant amounts of NarG
under aerobic conditions (Fig. 3B, lane O2). However, it is
interesting to note the existence of a partial expression of
NarG under anoxic conditions in the absence of nitrate
when both, the DnrT and the DnrS proteins, are constitu-
tively expressed (Fig. 3B, lane –O2). Nevertheless, full
expression of NarG still requires nitrate in addition to
anoxia.

These results allowed us to conclude that: (i) DnrT is
required for the synthesis of NarG, NrcD and DnrS, (ii) the
DnrT-dependent activation of the NrcD synthesis is insen-
sitive to oxygen and does not require nitrate, (iii) DnrS is

required for the expression of NarG but not for that of
NrcD, and (iv) expression of NarG is still dependent on
nitrate and anoxia, although DnrT and DnrS were present.

The HTH motif of DnrT is required to activate the
expression of the three NCE operons

In order to analyse in vivo if this activator role of DnrT on
the synthesis of the NarG, NrcD and DnrS was related to
its hypothetical ability to bind to the respective gene pro-
moters, the complementation experiment of the dnrT null
mutant was repeated with a DnrT site-directed mutant in
which two highly conserved residues of its putative HTH
motif (S185 and R186) were changed by A and L respec-
tively (SR/AL mutant thereafter). Figure 3A shows how
the constitutive expression of this SR/AL DnrT protein
from plasmid pWURdnrTSR does not allow the synthesis
of NarG or NrcD in a dnrT null mutant background. As the
amount of the SR/AL mutant protein detected by Western
blot in cells transformed with pWURdnrTSR was similar to
the amount of wild-type DnrT observed in cells trans-
formed with pWURdnrT, the differences in their effects on
the expression of NarG and NrcD were necessarily the
consequence of a mutation-associated function loss, and
not due to putative differences in their stability. Thus, the
DnrT-dependent synthesis of NarG and NrcD is most
likely a consequence of the transcription activation of the

Fig. 3. Constitutive expression of DnrS and
DnrT, and the role of the HTH motif of DnrT.
A. Western blots to detect DnrT, NarG and
NrcD were carried out on aerobic (A) or on
nitrate/anoxia-induced (An) cultures of the
NAR1 (Wt) and the dnrT null strains (dnrT)
transformed, either with the pWUR control
plasmid, or with its derivatives that express
the wild-type DnrT (pWURdnrT) protein or its
SR/AL mutant (pWURdnrTSR).
B. Cultures of the dnrS::kat null mutant
transformed with plasmid pWURdnrS were
grown aerobically, or incubated overnight
under anoxic conditions in the presence or in
the absence of nitrate (40 mM) before
immunodetection of DnrS and NarG. The
nitrate reductase activity of the cultures was
also measured (nmol of nitrite produced per
minute and per milligram of protein).
C. Detection of the indicated proteins on
nitrate/anoxia-treated cultures of the aerobic
HB27 strain (27), the facultative NAR1 strain
(Wt), the dnrT null mutant, and a mutant in
which the dnrT gene was replaced by that
encoding the SR/AL DnrT mutant (SR).
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respective gene promoters after the binding of DnrT
through its HTH motif. It is also noteworthy that the
expression of the SR/AL mutant from pWURdnrTSR inter-
feres with the synthesis of NarG under nitrate and anoxia
in the wild-type strain (Fig. 3A).

The experiments above supported the hypothesis that
the activating effect of DnrT on Pnar and Pnrc was depen-
dent on its HTH motif, but did not inform us about the
putative role of DnrT on its own expression. To analyse
this, the chromosomic wild-type dnrT gene was replaced
by the mutant one encoding the SR/AL DnrT protein
(Experimental procedures). The results of Fig. 3C show
that neither the DnrT SR/AL mutant protein nor the NarG
or the NrcD protein was induced under conditions in which
the three proteins were expressed in the wild-type strain.
Consequently, DnrT most likely acts as a transcription
activator by binding through its HTH motif to the promot-
ers of the nar, nrc and dnr operons.

Effects of DnrS and DnrT on the activity of the Pnar,
Pnrc and Pdnr promoters

To analyse and to quantify the putative effect of DnrS and
DnrT on the transcription of the nar, nrc and dnr operons,
the promoter region of each of them was cloned upstream
of a reporter gene (bgaA) encoding a thermostable beta-
galactosidase (Experimental procedures). The constructs
were then inserted into pMH184, a new cloning vector that
confers a thermostable resistance to Hygromycin B
(Nakamura et al., 2005; this work), which is compatible
with the thermostable resistances to Kanamycin and
Bleomycin. In this way, it was possible to quantify the
beta-galactosidase activity expressed from each pro-
moter even in Kanamycin-resistant mutants (dnrT and
dnrS) transformed with plasmids conferring Bleomycin
resistance (pWUR-derivatives). The beta-galactosidase
activities were measured under four different conditions:
presence or absence of oxygen, and presence or
absence of nitrate. The results are shown in the Fig. 4.

As expected, none of these promoters were expressed
under any condition in the aerobic strain T. thermophilus
HB27, which lacks the NCE (< 20 units). In contrast, in the
wild-type facultative strain (NAR1), the Pnar and the Pnrc
promoters were strongly induced under anoxic conditions
with nitrate (5–6 ¥ 103 units), whereas the Pdnr promoter
was induced at a much weaker level (6–7 ¥ 102 units), as
it could be expected for genes encoding regulatory
proteins. These data represents for Pnar, Pnrc and Pdnr,
a 56-fold, 97-fold and 14-fold induction of their respective
basal levels (40–100 units) under aerobic growth without
nitrate. Neither nitrate nor anoxia was able to induce the
Pnar or Pnrc promoters independently in a significant way
(less than 2-fold), although a slight expression of Pdnr (3-
to 4-fold) was observed with nitrate alone (Fig. 4C). The

Fig. 4. Quantification of the transcriptional activity of the nar, nrc
and dnr operon promoters. The indicated strains carrying the
promoter-probe plasmids pMHnarbgaA (A), pMHnrcbgaA (B) or
pMHdnrbgaA (C) were transformed either with pWUR (black bars)
or with a pWUR derivative that complemented the strains by
expressing the corresponding DnrS or DnrT proteins constitutively
(white bars). Then the beta-galactosidase activity of cultures grown
aerobically without (1), or with nitrate (2), or anaerobically without
(3) or with nitrate (4) was measured (Experimental procedures).
The represented data correspond to the mean values of three
independent experiments.
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results also showed that none of these promoters was
expressed in a dnrT null mutant, reinforcing the view of
DnrT as a central transcription activator during nitrate
respiration. We also observed that constitutive expression
of DnrT (from pWURdnrT) induced transcription from Pnrc
(60- to 70-fold), independently of the presence or absence
of oxygen and/or nitrate (Fig. 4B). In contrast, constitutive
expression of DnrT did not affect the nitrate and anoxia
dependence of Pdnr and Pnar. These results support that
the activator effect of DnrT on the Pnrc promoter is signal-
insensitive, and that DnrT and one or more additional
signal-sensitive transcription factors are required to acti-
vate the transcription from the Pnar and Pdnr promoters.

On the other hand, the absence of DnrS in the dnrS::kat
mutant abolished transcription from Pnar and Pdnr
(Fig. 4A and C). In contrast, Pnrc was constitutively
expressed (47- to 70-fold) in the dnrS::kat mutant, as
expected from the polar effect of the mutation on dnrT
(Fig. 2B). Interestingly, simultaneous expression of DnrS
from the complementation pWURdnrS plasmid and of
DnrT (because of the polar effect of the dnrS::kat muta-
tion, Fig. S2B) does not make the transcription from Pnar
and Pdnr signal-independent. In such conditions, anoxia
by itself has a minor (sixfold) stimulating effect on Pnar
expression, but combination with nitrate is still required to
get a strong induction (47-fold). This is in agreement with
the data from Fig. 3B showing a minor induction of the
NarG protein and of the nitrate reductase activity under
anoxic conditions. In contrast, Pdnr was significantly
induced by anoxia alone (10-fold, a 70% of the maximum
detected in the wild-type strain), whereas nitrate had only
a minor effect on its expression (Fig. 4C) in these comple-
mented dnrS::kat mutants. Thus, we deduced that DnrS
functions as an oxygen-sensitive transcription factor that
works in cooperation with DnrT for the activation of Pnar
and Pdnr. However, a yet unknown nitrate-sensitive com-
ponent of the induction apparatus is apparently also
required, in special to stimulate transcription from the
Pnar promoter.

DnrS changes its folding in the presence of oxygen

The data above supported that DnrS requires anaerobic
conditions to allow transcription from the Pdnr promoter.
Thus, we wondered if oxygen-induced inactivation of
DnrS could affect its folding. To check this, the DnrS
protein was expressed from vector pWURdnrS in two
cultures of T. thermophilus grown under aerobic condi-
tions or under anoxic conditions with nitrate, before its
sensitivity to trypsin was compared and detected by
Western blot (Experimental procedures). As shown in
Fig. 5, the DnrS protein expressed under anaerobic
conditions remained undigested by the protease after
1 min of treatment, whereas most of the DnrS protein

from the aerobic culture was digested in the same
period. In contrast, the DnrT protein expressed from
pWURdnrT showed a lower sensitivity to the protease
irrespective of the conditions used to express the
protein. It is interesting to note that DnrS degradation
products were similar in the protein expressed under
both conditions, suggesting that similar oxygen-mediated
folding change is taking place during the protease
treatment.

Purified DnrT activates transcription on Pnrc

The results from the Fig. 4 showed the relevance of DnrT
as a common transcription activator required for the
expression of the nar, nrc and dnr operons, and revealed
its post-translational signal-insensitive character, at least
when acting on the Pnrc promoter. Taking advantage of
this apparently insensitive nature, we expressed in E. coli
and purified the DnrT wild-type protein and its SR/AL
mutant (Experimental procedures). During this purifica-
tion, size-exclusion chromatography revealed a retention
time for DnrT corresponding to 45–50 kDa, around twice
its theoretical size, suggesting that DnrT forms a dimer
(data not shown).

Subsequent in vitro experiments with the purified
protein showed the ability of the wild-type DnrT protein to
bind to the Pnrc promoter. In particular, DNase I footprint
assays at 50°C revealed that DnrT was able to protect a
large sequence (CCTTCACCTTACTCCTTGACCCCG-
GTCAT) creating a hypersensitivity site at position -43
(underlined) with respect to the transcription start point of
the Pnrc promoter (Fig. S3). Further recruitment experi-

Fig. 5. Sensitivity of DnrT and DnrS to oxygen. The cytoplasmic
fraction of aerobic (+) and anaerobic (–) cultures of the wild-type
mutant transformed with pWURdnrT or with pWURdnrS was
treated during the indicated periods with trypsin (Experimental
procedures), and the remaining protein and resulting peptides were
immunodetected by Western blot with the respective antisera.
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ments were carried out to determine if DnrT was required
or not for the binding of the T. thermophilus RNA poly-
merase (thRNAP) to the Pnrc promoter. Figure 6A shows
a scheme of the procedure followed. In this, biotin-
labelled Pnrc promoter was bound to streptavidin-agarose
beads and used as a bait to bind the wild-type DnrT
protein or its SR/AL derivative at 50°C. Then the samples
were incubated with the RNA polymerase core (thRNAPc)
or its SigA (sA)-bearing holoenzyme (thRNAPh), and the
bound proteins were recovered by centrifugation and
analysed by SDS-PAGE. The results are shown in
Fig. 6B. As expected, the wild-type DnrT was recovered
bound to the Pnrc promoter (lane 3), whereas its SR/AL
mutant did not (lane 8). Neither thRNAPc nor thRNAPh
was able to bind to the promoter by themselves (lanes 4
and 5). However, the presence of DnrT efficiently
recruited thRNAPh (lane 7) but not thRNAPc (lane 6). As
expected, the SR/AL mutant protein was able to recruit
neither thRNAPc nor thRNAPh (lanes 9 and 10), because
of its inability to bind itself to the promoter. Thus, we
concluded that DnrT binds to the Pnrc promoter through
its HTH domain and recruits the thRNAPh.

Further evidence of the role of DnrT on the activation of
the transcription from Pnrc by the thRNAPh was obtained
by in vitro experiments at near physiological (60°C)
temperatures. As shown in Fig. 6C, thRNAPh alone
exhibits only trace transcriptional activity on Pnrc,
whereas in the presence of increasing concentrations
of the DnrT protein, it efficiently generates a full-length
transcript. Interestingly, a thRNAPh carrying the sE (SigE)

factor instead of the sA (SigA) was unable to initiate tran-
scription in the presence of DnrT. Therefore, in vitro tran-
scription from Pnrc requires only DnrT and its cognate
sA-thRNAPh, is insensitive to oxygen, and does not
require nitrate. In contrast, transcription experiments on
the Pnar and Pdnr promoters with the DnrT and thRNAPh
were unsuccessful (not shown), in agreement with our
in vivo data showing a requirement for at least DnrS in
addition to DnrT (Fig. 4). Addition of purified DnrS protein
(from E. coli) to the in vitro transcription reactions was
also unsuccessful.

DnrT represses nqo

As commented before, the nqo operon encodes the type
I NDH that constitutes the main electron donor during
aerobic growth. As nqo transcription is repressed during
anaerobic growth with nitrate (Cava et al., 2004), we
decided to test whether DnrT or DnrS was implicated in
such repression. As a first approach, we used promoter-
probe constructs to analyse the transcription from the
Pnqo promoter under the same conditions and strains
used in the experiment shown in Fig. 4. As it can be
deduced from Fig. 7A, the Pnqo promoter was constitu-
tively active in the aerobic strain HB27 (6–7 ¥ 103 units) in
every condition assayed (1–4). In contrast, in the faculta-
tive NAR1 strain, this promoter was repressed (to around
one-fifth of its activity) upon incubation with nitrate and
anoxia for 4 h (4). Interestingly, this repression did not
occur in a dnrT null mutant, supporting the responsibility

Fig. 6. Activation of Pnrc by DnrT.
A. Scheme of the recruitment experiment. The Pnrc promoter (grey-black helix) bound to streptavidin-agarose beads (grey ball) was incubated
with DnrT or its SR/AL mutant, and subjected to a further incubation with thRNAP core or holoenzyme. Proteins bound to the beads were
recovered by centrifugation and analysed by PAGE.
B. Results of the recruitment experiment. Samples of the immobilized Pnrc were incubated in the presence (+) or absence (–) of DnrT (DnrT),
its SR/AL mutant (DnrT-SR), the thRNAPh (RNAPh) or the thRNAPc (RNAPc), and proteins bound to the beads were analysed through a
4–20% NuPAGE Bis-Tris gradient gel (lanes 3–10, see the text for details). Standards corresponding to purified thRNAPh (Rh, 1) and DnrT
(D, 2) were run in parallel, and positions of each protein subunit are indicated. Common bands in all the lanes correspond to the BSA fraction
present in the buffer.
C. In vitro transcription on Pnrc by the thRNAPh carrying either the sA (thRNAPh-A) or the sE (thRNAPh-E) in the presence or absence of
5 pmol of DnrT. Samples were took after 2, 5 and 15 min. The full transcript corresponds to a 47-mer run-off of the Pnrc promoter.
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of DnrT on this effect. This was confirmed by expressing
DnrT in a constitutive way from pWURdnrT, which
resulted in Pnqo repression (1/10 of its normal activity)
even under aerobic growth. Moreover, a similar repres-
sion was also found in dnrS::kat mutants (they express
DnrT constitutively), reinforcing the idea that DnrT but
not DnrS was responsible for the observed Pnqo
repression.

To test this directly, DnrT was constitutively expressed
in T. thermophilus from pWURdnrT during aerobic growth
(without nitrate) and the amount of mRNA synthesized
from nqo and nrc operons was subsequently analysed by
semi-quantitative RT-PCR. The results showed that the
expression of DnrT leads to the repression of Pnqo and to
the concomitant activation of Pnrc even during aerobic
growth (Fig. 7B, inset). Interestingly, when the growth of
the wild-type and the dnrT null mutant strains bearing

or not the pWUR derivatives were compared, it was
observed that expression of DnrT (from pWURdnrT)
decreased the growth rate in comparison with the same
strain carrying the control plasmid pWUR, or expressing
the DnrT SR/AL mutant (from pWURdnrTSR). We con-
cluded that DnrT was actually decreasing the respiratory
efficiency during aerobic growth due to the replacement of
type I Nqo-NDH by the Nrc-NDH. Accordingly, the NDH
activity from membrane fractions isolated from the cul-
tures (time 8 h) revealed that the expression of DnrT
results in a decrease in the activity of 25–30% (700–750
units) compared with those expressing the SR/AL mutant
or carrying the control pWUR plasmid (around 1000
units). To identify which part of this activity was actually
due to the Nrc-NDH and which was due to the Nqo-NDH
remaining in the membrane, we included the nrcN::kat
mutant in the experiment (Cava et al., 2004). As shown in
Fig. 7B the nrcN::kat mutant grows aerobically as the
wild-type strain when carrying the pWUR control plasmid
or when expressing the SR/AL mutant, and shows similar
NDH activity (around 1000 units). In contrast, expression
of DnrT in this nrcN::kat mutant resulted in a very low NDH
activity (around 100 units) and in a further decrease of the
growth rate of the strain in comparison with that shown by
the wild-type strain expressing DnrT. This residual NDH
activity most likely corresponds to the Nqo-NDH still
remaining in the membrane, which is in agreement with
the repression of the nqo promoter by the pWURdnrT
plasmid detected in Fig. 7A. Additionally, these data show
that the Nrc complex is active as NDH in the wild-type
strain when expressed under aerobic conditions, but not
as efficient for growth as the Nqo type I NDH is.

Fig. 7. DnrT represses Pnqo.
A. The transcriptional activity of the Pnqo promoter was measured
under the four conditions used in Fig. 4 on the indicated strains
carrying the pMHnqobgaA plasmid and complemented (white bars)
or not (black bars) with the pWUR derivatives expressing either
DnrS or DnrT.
B. Inset shows the result of a semi-quantitative RT-PCR performed
to detect the transcripts from nrc (1) or nqo (2) in aerobic cultures
of the NAR1 strain carrying pWUR or pWURdnrT. M: DNA size
markers (759, 611, 453 and 273 bp). The graph shows the growth
curves at 60°C of aerobic cultures of the NAR1 strain (wt) and of
its dnrT and nrcN null mutants, transformed either with pWUR
control plasmid or with pWURdnrT or pWURdnrTSR derivatives.
The NDH activity of membrane fractions corresponding to 8 h of
growth of each culture is indicated (nmol of NADH oxidized per
minute and per milligram of protein).
C. In vitro transcription on Pnqo in the presence of thRNAPh and
increasing concentrations (0, 5, 10, 20, 40, 80 pmol) of DnrT.
Parallel control experiments were carried out with the T7A1
promoter and DnrT (0, 40, 80 pmol) to show the absence of
repression by DnrT on this unrelated promoter. An independent
experiment is also shown in which transcription from Pnqo was
carried out without (–) or with 80 pmol of DnrT (+) or its
DnrT-SR/AL mutant (SR). The run-off transcript from Pnqo and
PT7A1 correspond to 90 mer and 50 mer respectively. All reactions
were performed at 60°C for 10 min.
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A final approach to ascertain the repression of nqo
operon by DnrT was an in vitro transcription assay with
the thRNAPh. As shown in Fig. 7C, Pnqo was transcribed
by the thRNAPh, and the addition of increasing concen-
trations of DnrT to the reaction mix resulted in decreased
transcription until complete repression. In contrast, in
control experiment, transcription from unrelated T7A1 pro-
moter was not affected, even by the highest concentration
of DnrT assayed. As expected, transcription from Pnqo
was not repressed by the SR/AL mutant in an indepen-
dent experiment (lane SR). These results support our
conclusion that the observed repression of Pnqo by DnrT
was promoter-specific and dependent on its HTH motif.

Discussion

The ability of some strains of T. thermophilus to use
nitrate as electron acceptor during anaerobic growth
requires the replacement of the aerobic respiratory chain,
whose main electron donor is the Nqo type I NDH, by a
specific respiratory chain made of the heterotetrameric
enzymes NDH (Nrc) and nitrate reductase (Nar) (Cava
et al., 2004). Here we identify a new operon of the NCE
that encodes two transcription factors implicated in this
replacement of respiratory chains. In the following para-
graphs we discuss their specific roles according to our
data.

The DnrS protein

The analysis of null dnrS::kat mutants, in which the DnrT
protein is constitutively expressed, and the complemen-
tation assays with plasmid pWURdnrS revealed the
requirement of the DnrS protein for the expression of Nar
but not for the expression of Nrc. The development of a
new system of promoter-probe vectors, compatible with
other thermostable antibiotic resistances, allowed us to
observe that this effect took place at the transcription
level. Moreover, we could observe that DnrS was required
also to activate transcription from its own promoter.
Having in mind that DnrS has a C-terminal BTAD domain,
found in the DNRI/REDD/AFSR family of regulators of
secondary metabolism of Actinobacteria, we concluded
that DnrS most likely acts as a transcription activator on
the Pnar and Pdnr promoters.

However, constitutive expression of DnrS from plasmid
pWURdnrS in a dnrS::kat mutant, in which DnrT is con-
stitutively expressed, did not allowed transcription from
Pnar or Pdnr under aerobic growth. Therefore, either the
activities of DnrS or DnrT were sensitive to nitrate or to
oxygen, or alternatively, an unknown factor necessary for
the transcription from these promoters was not expressed
or inactive under such conditions. The analysis of the
separate effects of these two signals in cells expressing

DnrS and DnrT constitutively revealed that maximum
activity required both signals. Nevertheless, oxygen
depletion was more relevant than nitrate on the transcrip-
tion of the Pnar and Pdnr promoters. This was specially
relevant for the Pdnr promoter, in which oxygen depletion
produced a significant transcription increase (73% of its
maximum) in the absence of nitrate. Having in mind the
apparently insensitive character of DnrT on the activation
of Pnrc (see below), these results lead us to propose
DnrS as an O2-sensitive component of the induction
system.

In agreement with its apparent O2-sensitive character,
the protein DnrS has a GAF domain at its N-terminus.
Such domains are found in several cytoplasmic sensory
proteins, either associated to other signalling domains
such as histidin kinases, adenylate cyclases, diguanilate
cyclase/phosphodiesterases and protein phosphatases,
or associated to output domains (Galperin, 2004), like the
BTAD domain found in DnrS. The signal receptor role of
the GAF domains is usually associated to their capability
to bind small molecules. In fact, there are precedents of
oxygen and/or NO sensing by the GAF domains of the
DosS protein of Mycobacterium tuberculosis (Sardiwal
et al., 2005) and of the NorR protein of E. coli (D’Autreaux
et al., 2005). The way by which the signal is transmitted
from the GAF to the output domains is not yet understood,
but it is generally assumed that it implies a conformational
change, which affects the folding state and, concomi-
tantly, the activity of the regulatory domain (Galperin,
2004). In this sense, we have detected a higher protease
sensitivity of the DnrS protein exposed to oxygen during
its synthesis than when expressed under oxygen deple-
tion, supporting that an oxygen-dependent conformational
change that unstabilizes the protein is actually taking
place. Unfortunately, we cannot associate this conforma-
tional change to a loss of function in in vitro assays (DNA
binding, for example) because the DnrS protein purified
from in E. coli was inactive in all the assays carried out.
Thus, we hypothesize that native DnrS has an oxygen-
sensitive cofactor at its GAF domain that under reducing
conditions allows the protein to bind to specific sequences
on the Pdnr and Pnar promoters, but that upon oxidation
makes the protein inactive through a conformational
change. In this way, the DnrS protein could mimic the role
that the FNR factor plays as oxygen sensor during nitrate
respiration in E. coli (Korner et al., 2003). A detailed
molecular analysis of the way by which DnrS is inacti-
vated by O2 will have to wait until active DnrS could be
purified from anaerobic cultures of T. thermophilus.

DnrT as transcription activator

DnrT is required for the synthesis of the Nar and Nrc
enzymes, and also for its own expression, so it behaves
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as a central regulator of the nitrate respiratory system. It is
also clear from the experiments with the promoter-probe
vectors that DnrT acts at the transcription level on the
corresponding operon promoters. However, the form by
which these three promoters are activated by DnrT differs:
while it has to act in co-ordination with DnrS to stimulate
transcription from Pdnr and Pnar under nitrate respiration
conditions, its sole presence allows Pnrc to be tran-
scribed, independently of the presence or absence of
nitrate or oxygen. This behaviour supports that DnrT, in
contrast to DnrS, is insensitive to any of these signals, in
such a way that it could be considered as a constitutively
active transcription factor, whose function depends basi-
cally on the concentration reached and not on a putative
conformational change. In agreement to this, we found no
differences in the sensitivity to trypsin between DnrT pro-
teins produced either aerobically or anaerobically (Fig. 5).
This signal-insensitive behaviour contrasts with the
modular structure of the CRP family of transcription acti-
vators to which DnrT belongs. Actually, most CRP-like
factors contain sensory modules at the N-terminal half of
the protein that upon binding of molecules such as cAMP
(CRP), 2-oxoglutarate (NtcA), or upon detection of signal-
ling molecules such as O2 (FNR), CO (CooA) or NO
(Dnr, Nnr) by specific protein-bound sensory cofactors,
suffer a conformational change that allows the protein to
interact with a target sequence on specifically induced
(or repressed) promoters (Korner et al., 2003). In those
modules evolved to detect O2, either iron–sulphur centres
or haem groups are present (Korner et al., 2003), but
none of them have been detected in the purified DnrT
protein. However, besides iron–sulphur centres or haem
groups, we cannot rule out formally the possibility that
small molecules, common enough to be expressed in
E. coli, could bind to the ‘cAMP-binding domain’ present in
the DnrT sequence. In fact, a model for DnrT conserves
the two pockets that in the CRP structure contain the
cAMP molecules (Fig. S4A).

In any case, the DnrT protein purified from overpro-
ducing strains of E. coli was able to bind in vitro to the
Pnrc promoter through its HTH motif (the SR/AL mutant
did not bind), and to recruit purified thRNAPh in a
SigA (sA)-dependent way, allowing the transcription to
proceed under thermophilic conditions (Fig. 6C). As
neither the thRNAPc nor the thRNAPh was able to bind
to Pnrc by themselves under these experimental condi-
tions, and having in mind that DnrT binds to the Pnrc
promoter at a position (-43) similar to CRP on type II
promoters (Fig. S3), these results support the existence
of specific DnrT–thRNAPh interactions on Pnrc similar to
those observed on such promoters between activation
region AR3 of CRP and the C-terminal domain of s70

(Busby and Ebright, 1999; Lawson et al., 2004). To
check if similar interactions in the T. thermophilus pro-

teins were likely, and having in mind the availability of
high-resolution structures of thRNAPh, we used docking
programs to define a putative DnrT–thRNAPh interaction
model by using the DnrT AR3 region deduced from the
model, and the structure of sA in the thRNAPh crystal
(Fig. S4B). It is noteworthy that automatic docking,
without any hand-conducted refinement, resulted in a
DnrT–thRNAPh complex similar to modelled open pro-
moter complex proposed by Lawson et al. (2004) and by
Artsimovitch et al. (2004) (Fig. S4C). In this automatic
DnrT–thRNAPh model, the AR2 region of DnrT and its
putative target in the a-thRNAP are very close to each
other, supporting that interactions through them take
place in the DnrT–thRNAPh complex also. On the other
hand, it was possible to model a nicely complementary
set of interactions between the putative AR1 region of
the DnrT model and the C-terminal region of the
a-thRNAP on the basis of the co-crystal between CRP
and the a-ecoRNAP of structure 1LB2 (Benoff et al.,
2002) (Fig. S4D). Although yet a model, these data
support the existence of specific DnrT–thRNAPh inter-
actions on the Pnrc promoter similar to those produced
between CRP and ecoRNAPh on type II promoters
(Busby and Ebright, 1999). The specificity of such inter-
actions deduced from our model explains the absence of
transcription when the thRNAPh containing sE was used
in the transcription experiments on Pnrc (Fig. 6C).

DnrT is also required to activate transcription on Pnar
and Pdnr, but comparison of their sequence with that of
the region protected by DnrT on the Pnrc promoter did
not reveal clear similarities, probably as a consequence
of the complexity of both promoters, which also require
the presence of DnrS to be activated. In spite of having
no in vitro evidence for the binding of DnrS to DNA, our
data suggest that this is most likely the way by which it
helps DnrT to activate transcription. In this sense, the
promoter of the operon encoding the nitrate reductase A
of E. coli requires the binding of three proteins to get
active transcription in in vitro assays: promoter-proximal
binding of reduced dimers of FNR; promoter-distal
binding of several copies of the phosphorilated nitrate-
response regulator NarL; and binding of the IHF (integra-
tion host factor) protein in an intermediate region
(Schroder et al., 1993). Therefore, it is not surprising to
find a similar complex expression requirement for the
transcription of the thermophilic Pnar counterpart. In this
sense, our results suggest the existence of DnrT–DnrS
interactions on the Pnar promoter, not just due to the
obvious requirement for both proteins to activate tran-
scription, but also because of the inhibitory effect that the
presence of DnrT SR/AL mutant has on the expression of
NarG in the wild-type strain under normally inducing con-
ditions (Fig. 3A). The most likely explanation for this
result is that the mutant and the wild-type DnrT proteins
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compete for interaction with DnrS, and due to the higher
concentration of the first, few DnrS proteins remain avail-
able to activate transcription. In contrast, this effect does
not affect expression of NrcD because of its only depen-
dence on DnrT.

On the other hand, transcription from Pdnr presents
some differences with respect to the expression from
Pnar, despite the common requirement for DnrT and
DnrS. On this promoter the putative nitrate-response
regulator has a less relevant role once both DnrS and
DnrT have been expressed. A putative ‘sequential induc-
tion’ model could explain this (Fig. 1A). In this model, a yet
unknown nitrate-response regulator could be required to
get an increase of the basal expression level of Pdnr as
suggested by the results from Fig. 4C. A parallel or further
decrease in oxygen concentration could subsequently
stabilize DnrS in an active conformation (Fig. 5), allowing
the autoamplification of the regulators in an anoxic envi-
ronment (Fig. 4C). In this way, Pnrc could be induced by
DnrT to provide an appropriate electron donor for nitrate
(Fig. 4B) and, putatively, also for the whole denitrification
pathway, whereas expression from Pnar would be
more dependent on the continuous presence of nitrate
(Fig. 4A). Supporting this hypothesis, we have preliminary
evidences showing that the Nrc-NDH also constitutes the
main electron donor in complete denitryfying strains of
T. thermophilus growing on nitrite (in preparation).

DnrT as repressor

In addition to its role as transcription activator of the nrc,
nar and dnr operons from the NCE, a main observation of
this work is that DnrT also acts as repressor of the chro-
mosomic nqo operon, which encodes the aerobic type I
NDH. For this repression to be detected in vitro, a greater
concentration of DnrT was required compared with that
needed to activate transcription on nrc (Fig. 7C), thus
suggesting that the amount of Nqo decreases after
enough Nrc is synthesized, allowing a progressive
replacement of the respiratory chains.

This replacement of Nqo by Nrc is apparently contra-
dictory in terms of energy supply. In fact, in mesophiles
like E. coli the proton-extruding Nqo homologue (Nuo) is
induced during anaerobic growth with nitrate as a way to
compensate the loss of energy that the use of nitrate
instead of oxygen implies, whereas the non-proton-
pumping type II NDH is expressed in the presence of
oxygen, when the cells do not require the use of a high-
yield energy metabolism (Unden and Bongaerts, 1997).
Interestingly, this replacement of respiratory enzymes in
E. coli is under the control of FNR, a DnrT homologue.
Although Nrc is inhibited by Rotenone as Nqo does, its
subunit architecture, similar to the non-proton-pumping
succinate::quinone oxidoreductases (Cava et al., 2004),

suggests that it lacks the ability to pump protons upon
NADH oxidation. Moreover, the observation that the
replacement of Nqo by Nrc in cells growing aerobically
(strains carrying pWURdnrT) results in a much lower
growth rate, and the relatively minor effect on these
growth rates of a nrcN mutation (Fig. 7B) supports a
lower energy yield for Nrc than for Nqo per mol of NADH
oxidized when oxygen is the final electron acceptor.
Therefore, the energy yield seems not to be the driving
force that had selected for the adaptation of DnrT to its
repressor role on nqo, unless some kind of electron
channelling between respiratory complexes exists that
could limit the energy yield after the partial replacement
(Nqo by Nrc) of components. In this sense, there are
growing evidences of the formation of respiratory supra-
complexes in bacteria (Megehee et al., 2006) and yeasts
(Cruciat et al., 2000). Alternatively, one can imagine
DnrT as a mechanism evolved by a selfish mobile
element, like NCE, to ensure its integrity upon selection
after horizontal transference: repression of Nqo could
make the cell more energetically dependent on the pres-
ence of NCE.

Concluding remarks and perspectives

This work has shown the DnrT protein as the direct
responsible for the replacement of respiratory chains that
takes place during adaptation of T. thermophilus to nitrate
respiration, showing for the first time in vitro and in vivo
the direct activation and repression of thRNAPh transcrip-
tion activity by a thermophilic CRP homologue. However,
our data also opened several questions about how the
absence of oxygen and the presence of nitrate are sensed
by this organism. We have presented evidences that
suggest that T. thermophilus uses for this purpose com-
pletely different mechanisms from that shown by E. coli to
detect both signals. Instead of using a FNR homologue as
oxygen sensor, T. thermophilus apparently uses DnrS,
a protein containing a GAF domain, but the actual
O2-sensory cofactor remains unidentified. On the other
hand, the mechanism by which nitrate affects the expres-
sion of the dnr and nar operons remains unsolved. In most
bacteria, nitrate as a non-permeable solute is sensed at
the periplasm by homologues of NarX, the membrane
partner of a two-component regulatory system of E. coli,
and the signal is transmitted by phosphorylation of homo-
logues of NarL, the corresponding response regulator.
However, neither the NCE nor the genomes of the
sequenced strains of T. thermophilus encode homologues
of such a nitrate-sensory transmission system. This sug-
gests that as it apparently happens with O2 detection, a
different mechanism for nitrate detection and transcription
activation has evolved in this ancient bacterial lineage.
The availability of new genetic tools for this extreme ther-
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mophile, described and used in this work for the first time,
will help to find answers to these questions.

Experimental procedures

Strains and growth conditions

The E. coli strains DH5a [supE44, DlacU169 (f80 lacZDM15),
hsdR17, recA, endA1, gyrA96, thi-1, relA1] and BL21DE3
[hsdS, gal (lcIts857, ind1, Sam7, nin5, lacUV5-T7 gene 1)]
were used for plasmid construction and protein expression
respectively. T. thermophilus NAR1 is the facultative anaero-
bic wild-type strain in which the presence of the NCE was first
described. This strain was identified as HB8 in previous
works (Ramirez-Arcos et al., 1998a), but sequence compari-
sons with the recently available genome of the type strain
revealed that they are highly related but different strains. The
derivative nrcN::kat mutant of this strain was also used (Cava
et al., 2004). T. thermophilus HB27 is a wild-type aerobic
strain provided by Dr Koyama. T. thermophilus HB27c is a
facultative anaerobe derived from HB27 to which the NCE
was transferred by conjugation (Ramirez-Arcos et al.,
1998b).

Aerobic growth of T. thermophilus was routinely carried out
on TB at 60°C or 70°C under mild stirring (150 r.p.m.) in
one-fifth of the volume of the flask (Ramirez-Arcos et al.,
1998b). Induction by nitrate and anoxia (nitrate/anoxia con-
ditions) was achieved by arresting the shaker and the simul-
taneous addition of potassium nitrate (40 mM) to aerobic
cultures grown to an OD550 of 0.3. Under these conditions,
rapid consumption of O2, along its low solubility at high tem-
perature, makes the culture anoxic in a very short time.
Completely anaerobic growth was carried out in screw-
capped tubes containing 10 ml of TB and potassium nitrate
(40 mM), overlaid by mineral oil (Cava et al., 2004). Agar
(1.5% w/v) was added to the TB medium for growth on plates.
When required for selection, Kanamycin (30 mg l-1), Bleomy-
cin (15 mg l-1) or Hygromycin B (100 mg l-1) were added to
the growth medium.

Escherichia coli was grown at 37°C on liquid or solid LB
medium. Kanamycin (30 mg l-1), Ampicillin (100 mg l-1), Bleo-
mycin (3 mg l-1) and/or Hygromycin B (100 mg l-1) were also
used when needed.

DNA and RNA methods

DNA and RNA isolation, plasmid purification, restriction
analysis, plasmid construction and DNA sequencing were
carried out by standard methods (Sambrook et al., 1989).
PCR was performed with the DNA polymerase from
T. thermophilus as described by the manufacturer
(BIOTOOLS B & M, Madrid, Spain). For semi-quantitative
RT-PCR the Ready-To-Go™ kit (Amersham Biosciences)
was used. Directed mutagenesis was carried out by PCR.
The primers used are described in Table S1.

Gene cloning, plasmids and transformation

The dnrS and dnrT genes were identified within the sequence
of plasmid pUP1B, a pUC119 derivative from a gene library

(Fernández-Herrero et al., 1997) selected by colony blot with
a 3′ probe of the nar operon. E. coli–Thermus sp. shuttle
vectors pMK184 (this work), pWUR112/77-1 (Brouns et al.,
2005) and pMH184 (this work) are derivatives of pMK18
(de Grado et al., 1999) encoding compatible thermostable
resistances to Kanamycin, Bleomycin and Hygromycin B
(Nakamura et al., 2005) respectively. Plasmids pMHnarbgaA,
pMHnrcbgaA, pMHdnrbgaA and pMHnqobgaA are deriva-
tives of pMH184 in which the thermostable beta-
galactosidase reporter gene bgaA (Moreno et al., 2003) is
expressed under the control of DNA fragments containing the
promoter regions of the nar, nrc, dnr and nqo operons
respectively. The sizes of the promoters included in these
plasmids with respect to the translation start codon of their
respective first genes are: -784 to +6 (nar), -249 to +3 (dnr),
-343 to +315 (nrc) and -448 to +3 (nqo). In all the constructs,
the bgaA gene was preceded by a Shine–Dalgarno sequence
(GGAGG).

Plasmids pWURdnrT, pWURdnrtSR and pWURdnrS are
derivatives of pWUR112/77-1 used for constitutive expres-
sion of the wild-type DnrT, its S185A/R186L mutant and the
DnrS protein respectively. For this purpose, the respective
genes were amplified by PCR (Table S1) and cloned between
the NdeI and the EcoRI sites of plasmid pET22b (Novagen)
to further proceed to their isolation by XbaI and EcoRI diges-
tion and cloning in the same sites of pWUR112/77-1. In these
constructs, transcription from the constitutive PslpA promoter
of the Bleomycin resistance cassette continues through the
cloned genes, allowing their constitutive expression.

Transformation of T. thermophilus with linear or circular
DNA was achieved by natural competence (Cava et al.,
2004), whereas standard protocols were used to transform
E. coli.

Isolation and complementation of mutants

Plasmid pK18 is a derivative of pUC18 used as integrative
vector in T. thermophilus because of the presence of the kat
gene (Laptenko et al., 2006). Null dnrT mutants were isolated
by recombinative insertion of a pK18 derivative (pK18DNtCt-
dnrT) carrying a central fragment of dnrT (positions +101 to
+548) obtained by PCR with the primers dnrTEcoRI and
dnrTBamHI (Table S1). The S185A/R186L-directed mutant
was obtained by standard PCR protocols by using primers
dnrTmutSR, dnrTEcoR1rev and dnrTNde1 (Table S1). The
replacement of the wild-type dnrT gene by its derivative
encoding the S185A/R186L double mutant was carried out
by using a construct in which the mutant gene was cloned
into pK18 from positions +101 to the final stop codon of the
dnrT sequence to direct its integration by homologous
recombination. Insertional dnrS::kat mutants were obtained
by transformation with a linear DNA fragment carrying the
dnrS gene interrupted by the kat gene at a PstI site at position
+1255 with respect to its translation start, and flanked by
appropriate upstream and downstream homologous regions
for recombination. In this dnrS::kat mutant, the PslpA pro-
moter of the kat gene provides constitutive transcription to
dnrT because of the absence of a transcription terminator. In
all instances, the nature of the isolated mutants was checked
by PCR and by immunodetection with anti-DnrT or anti-DnrS.
Complementation experiments of these mutants were carried
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out by transformation with the pWUR derivatives described
above.

Promoter induction assays

Quantitative measurements of the transcription of the nar,
nrc, dnr and nqo operons were tested in cultures of wild-
type or mutant strains of T. thermophilus transformed
with promoter-probe plasmids pMHnarbgaA, pMHnrcbgaA,
pMHdnrbgaA or pMHnqobgaA respectively. The effect of the
absence or of the constitutive expression of DnrS or DnrT on
these promoters was assayed on dnrT or dnrS null mutants
transformed with the control pWUR plasmids or its corre-
sponding derivatives.

For aerobic expression, cells were grown for 8 h to the
exponential phase (OD550 between 0.3 and 0.6) under stir-
ring (150 r.p.m.) in a 1/10 volume of the flasks to allow
maximum oxygen diffusion. For anaerobic induction, ali-
quots of these cultures were subsequently transferred to
complete the total volume of 2 ml screw-capped tubes,
which were incubated for 16 more hours. Nitrate effect was
assayed by providing potassium nitrate at 40 mM to the TB
medium. All these experiments were performed at 60°C to
limit the putative toxicity of the constitutive expression of
DnrS or DnrT.

The beta-galactosidase activities of soluble cell extracts
were assayed in triplicate experiments on the chromogenic
substrate ONPG (ortho-nitrophenyl-galactopyranoside) at
70°C. The activities were expressed in arbitrary units as
described by Miller (1992).

Sensitivity to trypsin

Cultures of the NAR1 wild-type strain bearing the pWURdnrS
or pWURdnrT plasmids were grown at 70°C on nitrate-free
TB medium, either under aerobic conditions (180 r.p.m.) in
one-fifth volume of the flask to reach an OD550 of 0.5, or in
static bath overnight to limit oxygen diffusion. Then cells were
harvested, and subsequently disrupted by sonication (Braun
Labsonic; 1 min in 0.5 s pulses, maximum power) in TS buffer
(50 mM Tris-HCl, 50 mM NaCl, pH 7.5), before separation of
soluble and particulate fractions by ultracentrifugation
(150 000 g, 15 min at 4°C).

Sensitivity to trypsin was assayed in 80 ml of cell fraction
samples containing 2 mg ml-1 of protein. Then, 2 ml of
trypsin solution (5 mg ml-1 in HCl 1 mM) was added to the
samples, which were incubated at room temperature for the
indicated times. Digestion was stopped by boiling in
Laemmli loading buffer, and the proteins were separated by
SDS-PAGE (Sambrook et al., 1989). DnrS and DnrT were
identified by Western blot with specific rabbit antisera and
detected by chemiluminescence with the ECL detection kit
(Amersham).

Purification of DnrT, DnrS and thRNAP

The genes encoding DnrT, its S185A/R186L mutant, and
DnrS, were amplified with appropriate primers (Table S1)
and cloned between the NdeI and EcoRI sites of pET22b and

pET28b (Novagen) to allow their expression in E. coli
BL21DE3, either as the native protein sequences or with
N-terminal 6x-Histidine-tag fusions. Specific rabbit anti-DnrT
and anti-DnrS antisera were prepared by a private company
(Charles River Laboratories, Chalaronne, France) from the
respective proteins purified by SDS-PAGE for their further
use in immunodetection assays.

Both proteins were purified by affinity chromatography on
Ni-NTA agarose (Qiagen) followed by thermal denatura-
tion (70°C, 15 min) of remaining E. coli proteins. DnrT was
further purified through a size-exclusion chromatography on
superdex-200 and stored in aliquots at -20°C with glycerol
(40%) until use. The thRNAPc was purified from
T. thermophilus as in (Vassylyeva et al., 2002). Quantitative
in vitro transcription assays (Vassylyeva et al., 2002;
Laptenko and Borukhov, 2003) revealed that the thRNAPc
preparation contained 80% of catalytically active molecules.
Reconstituted thRNAPh (holoenzyme) was obtained by com-
bining 0.5 mg of thRNAPc with purified 0.15 mg of recombi-
nant SigA (sA) (Nishiyama et al., 1999) or SigE (sE) factors
followed by holoenzyme purification by size-exclusion chro-
matography using Superose 6 column (Vassylyeva et al.,
2002). Recombinant SigE was a generous gift from Dr
Jookyung Lee.

ThRNAP recruitment

A scheme of the recruitment experiment is shown in Fig. 6A.
Biotine-labelled Pnrc (positions -207 to +28, 235 bp) was
bound to ImmunoPure Immobilized Streptavidin Gel (Pierce)
in binding buffer (20 mM HEPES, 50 mM NaCl, 10% glycerol,
0.1 mg ml-1 Bovine seroalbumin, 5 mM 2-mercaptoethanol,
pH 6.9). Then, the DnrT protein or its SR/AL mutant (1 mg)
was incubated for 15 min at 50°C with 0.2 mg of Pnrc-resine
in 20 ml samples containing 2 mg of salmon sperm DNA.
ThRNAPc or thRNAPh (4.7 pmol) was then added and incu-
bated for 15 more minutes at the same temperature. After
three washing steps with 300 ml of binding buffer, the bound
proteins were eluted with 1% SDS, separated in a 4–20%
NuPAGE Bis-Tris gradient gel (Invitrogen), and Coomassie
blue stained. Samples without DnrT were used as negative
controls.

In vitro transcription

In vitro transcription was carried out in 10 ml samples of
transcription buffer (50 mM MOPS, 40 mM KCl, 10 mM
MgCl2, 0.1 mM Dithiotreitol, pH. 6.5) containing 0.3 pmol of
the promoter DNA (Pnar, PT7A1, Pnrc or Pnqo), 1.75 pmol of
thRNAPh, bearing either sA or sE, and the specified amounts
of wild-type DnrT or its SR/AL mutant. Transcription started at
60°C by adding a NTP mix (0.8 mM GTP, 0.8 mM ATP,
0.1 mM CTP, 0.2 mM UTP and [a-32P]-CTP) and continued
for different times before analysis. The sizes for the promoter
regions amplified by PCR (Table S1) used in these assays
were: -207 to +28 for Pnrc (235 bp), -784 to +6 (790 bp) and
-211 to +1 (212 bp) for Pnar, and -448 to +3 for Pnqo
(458 bp). The 270 bp T7A1 promoter was used as positive
transcription control in different experiments (Nudler et al.,
1997).
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Amino acid sequence alignment and molecular
modeling of DnrT

The domain identification on DnrS and DnrT was carried out
through the InterPro Scan Sequence search program at the
EMBL-EBI. DnrT homologues obtained with BLAST (Altschul
et al., 1995) were aligned using CLUSTALW (Thompson et al.,
1994) and T-COFFEE (Notredame et al., 2000) algorithms. The
structural model of DnrT was built on CRP–DNA complex
structure (PDB entry 1O3R; Chen et al., 2001) by using the
SWISS-MODEL server facilities (Schwede et al., 2003) and
its quality examined with WHAT-CHECK procedure (Hooft
et al., 1996) of the WHAT IF program (Vriend, 1990). The
model was further refined by subjecting it to three steps of 50
cycles of the steepest descent minimization method of the
DEEPVIEW program (Guex and Peitsch, 1997). The model for
interaction of thRNAP a-C-terminal domain with AR2 of DnrT
was built using the protein–protein rigid docking method
implemented in HEX program (Ritchie and Kemp, 2000),
setting the initial position of the putative complex on the
CRP-a-ecoRNAP C-domain structure (PDB entry 1LB2;
Benoff et al., 2002). The model for DnrT–sigma A interaction
was carried out by the same method using the deduced DnrT
model structure and the co-ordinates of thRNAPh structure,
which includes the position of sA in the complex (PDB 1SMY;
Artsimovitch et al., 2004). To reduce the translational-
rotational search, the initial positioning of the putative
complex was set by an initial generation of 5 ¥ 103 different
docking solutions for the complex, using the low-resolution
docking algorithm GRAMM (Vakser, 1995), and by selecting
solution that minimizes the average distance between the
DnrT AR3 site and its binding site on sA, as described
(D’Autreaux et al., 2005).

Data deposition

The sequence of the dnr operon was deposited to EMBL
GenBank with the identification No. AM161043.
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Supplementary material

The following supplementary material is available for this
article online:
Fig. S1. DnrT amino acid sequence alignment. Sequences
of DnrT and other members of the CRP family were com-
pared and aligned using CLUSTALW program. Identical
residues are shaded in grey, and residues subjected to site-
directed mutagenesis in DnrT are marked with asterisks.
Secondary structure elements (H, alpha helix; E, beta strand)
of E. coli CRP (CRP-Eco, PDB entry 1O3R), as well as two
structural motifs, the dimerization helix and the helix-turn-
helix DNA-binding motif are shown in the lower row (CRP-
Eco (ss)). Known sites of CRP interaction with RNAP
(activation regions AR1, AR2 and AR3) are shown as
coloured boxes above the DnrT sequence. Schematic
diagram showing the spatial relationship of AR1-AR3 regions
of CRP and RNAP subunits is presented at the bottom.
Protein accession numbers: THET2-TtheH – TTC1072 from
T. thermophilus HB27; FLP-Llac – Q9S393 from Lactococcus
lactis; NarR-Ppan – Q93PW2 from Paracoccus pantotro-
phus; DnrE-Pst – Q9X7J7, DnrD-Pst – Q9X7J4, and FnrA-
Pst – P7200 from Pseudomonas stutzerii; Dnr-Pae – Q51441
and ANR-Pae – P23926 from P. aeruginosa; FNR-Eco –
P0A9E6 and CRP-Eco – P0ACJ8 and from E. coli.
Fig. S2. A) Immuno-detection of the indicated amounts (ng)
of DnrS and DnrT purified from over-expressing strains of E.
coli. B) Western blot of total protein extracts from T. thermo-
philus showing the DnrS and DnrT proteins expressed in the
facultative wild type strain (NAR1) grown aerobically (A) or
treated for 4 hours under anoxia with nitrate (An), and in its
dnrS::kat mutant grown aerobically before (-) or after trans-
formation with pWUR (pW) or with pWURdnrS (pWdnrS). The
aerobic strain HB27 (27) is shown as control. Note that con-
stitutive expression of DnrT in the dnrS::kat mutant during
aerobic growth is independent of the presence of pWURdnrS.
Fig. S3. DNase I footprinting analysis on triplicate samples
of the Pnrc promoter with (+DnrT) or without (-DnrT) the DnrT
protein. Samples (20 ml) of Pnrc (7 pmol), labelled in the
template strand by PCR with primers [32P]-FPpnrcRev and
FPpnrc47rev, were incubated for 5 min at 50°C with DnrT (5,

10, 50 pmol) in the presence of 2 mg of [dI-dC], and digested
with DNase I for 1 min at 50°C in reaction buffer (8 mM
HEPES, 6 mM MgCl2, 100 mg/ml BSA, pH 7.5). Samples
were analyzed by denaturing PAGE and visualized by
autoradiography. The sequence protected by DnrT is shown.
Fig. S4. Structural model for DnrT. A) Ribbon plot of the
proposed structure for DnrT dimer interacting to a DNA
molecule, represented as a surface coloured according to
electrostatic properties. Atoms of residues located in the
interaction areas AR1 (yellow), AR2 (blue) and AR3 (green)
are depicted as spheres. Model shows the location of the
large dimerization helices of both molecules in the dimer
interface, as well as the HTH motif in close contact to the
major groove of DNA. The location of the cAMP molecules in
the CRP structure is shown for clarity. B) Detail of modeled
AR3-sA – DNA interaction. Position of residues in AR3
domain, represented as ‘sticks’, indicates the location of side
chains of R63 and K64 (blue) pointing to the negatively
charged surface of DNA phosphate backbone. Acidic chains
of D59 and E61 (red) are faced to the positive residues of
K403, R406, and K407 of sA. Residues R396, and R398
appear to bind phosphate groups in the backbone of DnrT-
bound DNA. C) Modelled interaction of DnrT to thRNAPh.
Proteins, as well as DNA bound to DnrT, are represented as
atomic surfaces. AR2 site in DnrT and its proposed recogni-
tion site in a-thRNAPh have been highlighted. D) Model for
the interaction of the C-terminal domain of the a-thRNAP
(green ribbon) with DnrT through the AR1 domain. Atoms of
residues in contact in both proteins are illustrated as spheres.
DNA surface has been omitted for clarity. Plots were gener-
ated using PyMOL (DeLano Scientific, San Carlos, CA).
Table S1. Oligonucleotides used in this work and their
purpose.

This material is available as part of the online article from
http://www.blackwell-synergy.com
Please note: Blackwell Publishing is not responsible for the
content or functionality of any supplementary materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
article.
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