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Abstract: To be effective, a designed drug must discriminate successfully the macromolecular target from alternative
structures present in the organism. The last few years have witnessed the emergence of different computational tools
aimed to the understanding and modeling of this process at molecular level. Although still rudimentary, these methods are
shaping a coherent approach to help in the design of molecules with high affinity and specificity, both in lead discovery
and in lead optimization. It is the purpose of this review to illustrate the array of computational tools available to consider
selectivity in the design process, to summarize the most relevant applications, and to sketch the challenges ahead.
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THE PROBLEM AND RELEVANCE OF SELEC-
TIVITY

To design a drug, one now normally searches for a
“magic bullet” that binds specifically to a rationally chosen
target. This reductionist approach is proving highly
successful [1], however it has certain drawbacks. Probably
one of the biggest is that the possibility that a designed
molecule binds in places other than the target is often
neglected, only to find out late in the discovery process that
the candidate drug has failed. To be effective, a designed
drug must discriminate successfully the macromolecular
target from alternative structures present in the organism.
Not only the affinity for the desired target, but also the
selectivity over potential competitors, is of crucial
importance. For instance, the human genome encompasses
some 500 different protein-tyrosine and protein-serine/
threonine kinases [2]. A number of diseases, including
cancer, diabetes, and inflammation, are known to be linked to
perturbation of protein kinase–mediated cell signaling
pathways, and for this reason there has been a growing
interest in the use of kinase inhibitors as drugs [3]. But
although it has been demonstrated exhaustively that
promising ATP-antagonistic inhibitors can be found, the
biochemical, cellular, and in vivo selectivity of such
inhibitors remains unresolved. Since a great majority of
these inhibitors are ATP-competitive, and protein kinases
share considerably homology in their ATP-binding site, most
of them do not have the level of selectivity required for a
successful in vivo pharmacological activity [4]. This is a
paradigmatic case, but the examples abound. Similar
situations have been found with matrix-metalloproteinases
(MMPs) [5], serine proteases [6] or nuclear receptors [7]. In
all these cases, a “design out” of the competitors can be just
as important as a “design in” over the target.
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Bioinformatics may have a primary role in addressing
this problem. The spectacular advances in Genomics,
Proteomics and Combinatorial Chemistry, together with the
accelerating pace of biomolecular structure determination
and the advent of structural genomics, are starting to provide
the necessary building blocks to build successful
computational strategies in order to attack the problem.
Fuelled by these advances, the last few years have witnessed
the emergence of different computational tools aimed to the
understanding of selectivity in biomolecular systems.
Nowadays, in a drug design project, it is increasingly
common that the 3D structure of the target macromolecule as
well as a number of its putative competitors for the drug in
the genome are available or can be inferred and modeled [8].
As we shall see, this information is beginning to be
incorporated using a number of tools into the ligand design
process. These tools range from algorithms to discover and
analyze paralogs and orthologs in genome databases or to
analyze multiple sequence alignments in order to uncover
family specific sequence motifs, to docking post-processing
tools able to extract family specific interaction patterns from
docking calculations, and to algorithms for the generation of
receptor-specific scoring functions to be used in virtual
screening or combinatorial library design. Although still
rudimentary, altogether these methods are shaping a coherent
approach to the design of molecules with high affinity and
specificity, both in lead discovery and in lead optimization.
It is the purpose of this review to illustrate the array of
computational tools available to consider selectivity in the
design process, to summarize the most relevant applications,
and to sketch the challenges ahead.

COMPUTATIONAL METHODS TO MODEL AND
PREDICT SELECTIVITY

Let us imagine a brave computational medicinal chemist
confronted to the problem of discovering a selective
molecule preferentially binding to a single member of a
populated but poorly characterized protein family. How
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could he/she proceed? First, our imaginary friend could ask
the question of what are the most suitable sites in the protein
to target. Presumably, he/she would reason, these should be
functionally important sites with a differentiated shape
and/or electrostatic properties between the target protein and
its competitors. We will start by presenting some sequence
and structure based approaches to uncover these sites. Then,
our medicinal chemist would probably like to know what
sort of chemical groups could bind to these selectivity sites,
and how he/she could select from virtual screening searches
appropriate ligands binding with these optimal groups in the
expected differential way he/she seeks. We will also review
some of the computational tools available for this task. Now,
assuming that some of these searches actually yielded new
leads, the next task of our hero is, in collaboration with
fellow chemists, to optimize the lead. Consequently, he/she
would expect some 3D-QSAR methods to be available for
this second half of the problem. These will also be surveyed.

Sequence-Based Methods

Gene duplication and divergence over million of years of
evolution have given rise to collections of related proteins,
which eventually can be hierarchically classified into
families and subfamilies. Highly conserved residues within
each one of these groups are strong candidates to be located
at functionally important sites. These residues are expected
to be involved in determining the interaction specificity of
the subfamily members in the binding pocket. Therefore,
these residues, generally referred to as tree determinant
residues [9] or trace residues [10], are the main responsible
of the partition of the family into its specific functional
subfamilies. Thus, the elucidation of differentiating patterns
of residue conservation among the different functional
subclasses can be employed to predict residues expected to
be involved in functional specificity. Uncovering and
targeting these residues with appropriate organic groups is an
attractive strategy to design selective ligands. Two main
methodological approaches are available, depending on the
available information (Table 1): supervised and unsupervised
methods. In the supervised methods the discriminating
classes are known in advance, and the computational method
attempts to find the positions that best discriminate among
functional classes given the alignment. In the unsupervised
methods both classification and discriminating positions are
resolved simultaneously.

Provided that a functional grouping of the proteins to
discriminate pharmacologically is available, supervised
methods can be applied to infer those residues conferring the
observed specificity. Hannenhalli & Russell [11] proposed
that key residues involved in functional specificity can be
revealed by comparing specific hidden Markov models
(HMM) [12] fitted to multiple sequence alignments of the
proteins contained in each functional group. The comparison
of the different HMMs identifies the positions in the
sequence alignment that are best at discriminating between
the groups modelled with the HMM, i.e. positions conserved
within the subclasses, but different among them. This is
achieved by computing the level of dependency of a position
to a given subclass by means of the relative entropy in terms
of the positional parameters defined by the HMM profile. A
problem with this entropy position-dependent approach is

that it only detects obvious patterns of conservation within
subfamilies.

Functional specificity of proteins is believed to be more
conserved among orthologs than among paralogs. Orthologs
are genes in different organisms which are direct
evolutionary counterparts of each other. Hence, orthologs
were inherited through speciation. Paralogs, on the other
hand, are genes in the same organism which evolved by gene
duplication. After duplication, paralogous proteins experience
weaker evolutionary pressure and their specificity diverges
leading to emerging of new specificities and functions.
Starting from this observation, Mirny & Gelfand [13,14]
proposed a method based on mutual information formulation
to identify residues which determine specificity of protein-
DNA and protein-ligand recognition. The idea is to start
from a family of paralogs in one genome, find orthologs for
each member of the family in other genomes and then
identify residues that can better discriminate between these
orthologous (specificity) groups. This second part uses a
statistical procedure to determine whether positions in the
multiple sequence alignment (MSA) can discriminate
between functional sub-families better than the sequence
similarity. Since the goal is to identify residues that can
discriminate between paralogous proteins (different
specificity) and at the same time merge orthologs (same
specificity) together, the use of mutual information as a
measure of association with the specificity seems natural.
However, since mutual information can be biased due to the
small sample size or biased amino acid composition, it is
necessary to compute the statistical significance of the
mutual information which, together with the mutual
information value, is finally used to predict the specificity
determining residues. The authors applied the method to
identify residues involved in the DNA recognition of the lacI
family of bacterial regulatory proteins. Mapping of the
selected residues onto a protein structure showed that most
of them belong to two spatial clusters. Residues of one
cluster bind the DNA, while residues of the other cluster
form a ligand pocket of the protein. The result is consistent
with the known function of the transcription factors in this
family: they repress transcription by binding the DNA and
release transcription when a particular ligand is present. A
difficulty with this approach is the fact that it relies heavily
on the grouping of proteins by orthology. To resolve
orthology, one needs to have (almost) complete genomes of
several closely related organisms. This makes the analysis
significantly data demanding. Even if complete genomes are
available, orthology may not be easily resolved when very
similar paralogs are present or when genomes are too
diverged from each other.

All previous methods need a known classification
scheme. While this is the most common situation in a drug
discovery project, it might also be beneficial to use
unsupervised methods if, for example, function classifiers
are not well defined, or putative competitors are obtained
from mining genome databases, but are otherwise
uncharacterized. One of the first unsupervised methods was
introduced by Casari et al. [9] with SequenceSpace, based on
a principal component analysis (PCA) [15] of a multiple
sequence alignment. The sequence space of the protein
family can be considered a multidimensional space, with as
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many axes as residue-position variables in the multiple
sequence alignment. A protein sequence is represented as a
point in this space. PCA defines a new subspace in this space
where most of the variability in the cloud of points is
contained. The latent factors identified by PCA establish a
direct link between sequence patterns (groups) and residue-
position patterns, allowing the mutual assembly of the
sequences in different functional subclasses, along with the
cluster of the residue-positions responsible of such division
(Fig. (1)). Sequence Space has been used, for example, to
identify residues responsible for the differences in specificity
of Ras and Ral regulatory  proteins [16]. The predictions were
experimentally validated showing that replacement of two
specific positions produced an interchange of binding
specificities.

Other methods falling in this category are the Evolutionary
Trace (ET) [10] and Consurf [17] methods. Both partition a
sequence-based tree at different thresholds to generate
groups that may correspond to different functional
subclasses. The specific patterns of sequence conservation
within the groups are used to mark sub-tree discriminating
residues (Fig. (1)). These residues are mapped onto a
representative structure of the family. The original ET
method, by Lichtarge et al. [10], obtained the optimal
partition threshold subjectively by visualizing the different
clusters of residues mapped onto the 3D structure.
Improvements were later introduced to correct the influence
of sequence redundancy [18,19], and to select an optimal
threshold by determining the statistical significance of the
clusters of residues mapped onto the 3D structure [20].
Armon et al. [17] introduced ConSurf as an improved
variation of the basic scheme in ET. Instead of the UPGMA
method used in ET to build the gene tree, which considers
equal rates of evolution along all branches, ConSurf uses a
more rigorous maximum parsimony method. ConSurf also

takes into account the physicochemical properties of the
amino acids. It also introduces a weighting scheme in an
attempt to reduce the effect of bias in the sequence sampling.
Finally, another interesting property of ConSurf is its
capacity to identify the branch where an amino acid
replacement takes place, circumventing the problem of
establishing cutoffs to define sequence groups. Yet, ConSurf
cannot account for differences in branch lengths. This
problem was overcome in Rate4Site [21] by using an
estimate of the rate of evolutionary mutation at each position
as an indicator of the degree of the conservation. In this way,
amino acid changes are weighted in terms of their branch
length, an effect particularly important when very similar or
very distant homologs are used as input.

A main difference between SequenceSpace and a tree
analysis methods such ET, is the way in which both methods
accomplish the division of the family into functional
subclasses. Whereas the family classification arranged by a
gene tree is based on the complete sequence, PCA classifies
sequences based on positions weighted by their degree of
conservation within the group. Positions devoid of
conservation patterns do not play a significant role in the
partition. This difference might confer more plasticity to
PCA and can provide finer functional classifications. A
second advantage of a PCA classification is that allows
residue-position to belong to more than one group. Examples
of the use of these methods in the analysis of several protein
families are presented in the case examples section.

Mixing Sequence and Structural Information

The previously described methods make a limited use of
structural information. They simply use the structure to map
the discriminating residues. But if structural data is available
for all proteins or it can be reliably derived, it is possible to

Table 1. Summary of the Different Sequence-Based Methods to Detect Selectivity Related Residues Discussed in this Review
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include this information directly in the process of
determining discriminating positions. First of all, structural
data can be directly incorporated in the generation of more
accurate MSAs. For example, Al-Lazikani et al. [22]
developed a strategy based on the 3D superposition of
known structures and homology models combined with
HMM profiling to improve the quality of the multiple
sequence alignments (MSA) of the Janus Kinases (JAKs)
family. The improved profiles allowed the authors to show
that the human TYK2 kinase contains an SH2 domain, which
should not be capable of binding phosphotyrosine, due to the
presence of a histidine residue instead of the arginine residue

normally found in the phosphotyrosine binding site. pKa
calculations predicted that the uncharged form of histidine is
predominant, likely avoiding negative charged substrates
such as phosphotyrosine-containing peptides to bind.

Additionally, the spatial disposition of the residues,
together with the associated physico-chemical properties of
the site, such as the electrostatic potential, can also be
directly used in the determination of discriminating
positions. Winn et al . [23] explored this avenue by merging
electros- tatic potentials with sequence and structural
information. They used a combination of ConSurf to build a
tree and to select the residues capturing the variation within

Fig. (1). Sequence Space Analysis to determine specificity residues. The analysis starts with a multiple sequence alignment (A), here
representing three subfamilies, which can be obtained with programs such as ClustalW [90] or T-Coffee[91]. From the alignment it is
possible to derive gene trees (B), for example with the aid of the Phylip package (http://evolution.genetics. washington.edu/phylip.html), and
then assign to the different nodes in the tree those positions in the alignment holding residues clustered in a similar manner to the sequences
in the subtree, using ET or ConSurf (see Table 1). These residues can be mapped onto the 3D structure of a family representative. 3D
clustering might be indicative of a specificity site (C). Alternatively, the multiple sequence alignment can be subjected to Principal
Components Analysis (PCA) (D). The new orthogonal axes obtained from PCA are linear combinations of the original ones. Contribution of
each original variable to the determination of each axis can be inspected in plots such as the one in (E). A comparison of both plots highlights
subfamilies in the alignment and specificity residues within each subfamily. For example, three subfamilies are present in (D), with
subfamily three (SF3) clustering along the y axis. Inspection of (E) indicates that residues N, E and K at positions 3, 4 and 7, respectively, in
the alignment, discriminate this subfamily from the rest. The plot also shows that T at position 6 differentiates subfamilies 2 and 3 from 1.

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
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subfamilies with analysis of electrostatic potentials (ESPs)
computed by solving de Poisson-Boltzmann (PB) equation
[24] at different ionic strengths on homology models of the
proteins in the alignment. The similarity among all pairs of
ESP data was measured and a PCA study was carried out.
The goal was to compare the distribution of the ESP data
that of with the sequence data to reveal distinctive regions of
electrostatic potential among subfamilies correlated with the
sequence-based classification, and which could be associated
with functional differences. They applied this method to the
ubiquitin conjugating enzyme family (E2 protein family).
The E2 family is known to ubiquinate histones along the
ubiquitin protein ligation pathways, and have an overall
negative electrostatic potential distribution. The analysis
showed that an N-terminal sequence motif, likely involved in
E2 binding to its E1 partner, has different ESP distributions
and different functionality despite its high sequence
similarity at the family level.

Similarly, Basu et al. [25] studied whether the ESP of
purine-binding sites in proteins is sufficient to discriminate
between adenine and guanine specific binding sites (A/G
discrimination). The A/G discrimination at the binding site
of proteins usually appears fuzzy in terms of conserved
sequence and structural motifs. A PCA of the ESP distri-
bution over the ligand-free proteins showed that the A/G
binding sites can be expressed as a linear combination of two
ESP principal components, representing almost completely
the electrostatic component of the binding site energetics.
The analysis showed that differences between the ESP
patterns are enough to recognize specific from non-specific
binding sites related to the A/G specificity in proteins.

The examples discussed provide strong support to the
hypothesis that analysis of physico-chemical properties
beyond sequence level is important to understand specificity
in proteins and can be profitably used in ligand design.
Novel methods based on this idea are discussed in the
following paragraph.

Finding Specificity Pockets

Once key discriminating residues are selected using any
of the methods previously described, selectivity pockets
having strong interactions with favourably positioned
organic groups in the site can be obtained. These organic
groups can be incorporated in appropriate scaffolds in de
novo design algorithms or to generate appropriate
pharmacophores to search chemical libraries. Interaction
grids computed around these residues can be employed to
find these sites and the associated chemical groups. At each
grid point interactions energies are computed between all
atoms in the protein and some typical atoms (C, H, O, N, S,
P, halogens ...) found in the majority of common drug-like
molecules are computed. Equally spaced grid points
surrounding the area of interest are generated, and the
resultant energies stored in three-dimensional arrays for post
processing. Applying PCA to these grids it is possible to
extract regions discriminating groups of proteins, and
therefore related to specificity. The technique, termed
GRID/PCA, was first introduced by Cruciani and Goodford
[26] in the field of DNA-drug interaction, and later applied
by Pastor and Cruciani to the case of DHFR enzyme [27].

Kastenholz et al. introduced the use of multiple structures for
each target to search for selectivity determinants, an
approximation termed target family landscape [28]. The
approach was successfully applied to selectivity in the case
of thrombin, trypsin, and factor Xa serine protease enzymes
(see below). A similar study was performed using a set of
receptor structures that belong to different subfamilies of the
protein kinases superfamily [29]. The analysis successfully
discriminated among the different subfamilies, and
highlighted key residues for selectivity (see below).

Sites selected by target family landscape or similar
approaches can be targeted with virtual screening methods to
detect putative binders with selective properties. Post-
processing the virtual screening results, as in the Structural
Interaction Fingerprint (SIFt) method [30], can be useful to
extract these molecules from the putative binders. With SIFt,
each ligand-receptor decoy is transformed in binary digits
accounting for the presence (1) or absence (0) of favourable
contacts between the ligands and the residues in the binding
site. Each residue in each protein is coded as an N bit string
consisting on 0s and 1s (N being the type of contacts to be
calculated). When these strings are compared among
different sequences, common interaction patterns arise, as
well as key differences essentials for selectivity. If select-
ivity-determining residues have been spotted previously,
ligands having the desired interactions with the receptors can
be isolated. The method has been successfully applied to
classify kinase-ligand complexes into subfamilies. It was
tested for its ability as a scoring function to cluster different
docking solutions, performing better than other widely used
scoring functions, and as a filter in virtual screening
protocols. In a recent publication from the same group, SIFt
profiles (p-SIFt) were calculated by averaging bit values
from the same item thorough all the sequences [31]. These
profiles are used to quickly detect similarities/differences
between groups of inhibitors. pSIFts have proved useful in
detecting false positive and negative hits.

Determining Selectivity from First Principles

Protein-ligand binding free energy differences can in
principle be computed from first principles using free energy
perturbation techniques and a full atomic detail model with
explicit solvent molecules using molecular dynamics
simulations. However, these are computationally demanding
and, therefore, cannot be used for virtual screening or library
design. More affordable approaches use end-point molecular
dynamics simulations and compute free energies accounting
for solvent effects with continuum methods, such as MM-
PBSA (Molecular Mechanics-Poisson-Boltzmann surface
area) or MM-GBSA (Molecular Mechanics-Generalized
Born surface area) [32]. Although still expensive, these
methods can be employed to rerank a limited hit list obtained
from a virtual screening run in order to select a small set of
putative selective leads for experimental testing. Some recent
works suggest that this might become a feasible strategy
[33]. Similarly, MM-PBSA and MM-GBSA have been
explored to study selectivity. For example, Rizzo et al . [34]
performed molecular dynamics simulations with six
inhibitors on stromelysin-1 and gelatinase-A, two
homologous MMPs with different selectivity patterns.
Selected snapshots extracted from the simulation where
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processed with MM-PBSA and MM-GBSA to calculate
∆∆Gbinding. The calculations yielded correct values as
compared with experiments. The van der Waals interactions
resulted to be mainly responsible of selectivity, with a minor
contribution from the electrostatic part. Aromatic rings in the
binding site were shown to be the main determinants of the
observed selectivity. A similar analysis was done by Laitinen
et al . [35] who studied the binding of four 17beta-estradiols
differing in the D-ring to antiestradiol antibody 57-2,
antiprogesterone antibody DB3 and antitestosterone antibody
3-C4F5. Experimentally, only 17beta-estradiol is able to
bind with good affinity to the antiestradiol antibody.
Interestingly, a detailed analysis of the energy components
allowed determining that van der Waals interactions were
mainly responsible for affinity, while electrostatics
accounted for the selectivity of the different ligands, in
contrast to the case studied by Rizzo et al. [34]. In addition,
∆∆Gbinding was also calculated with the computational alanine
scanning method [36]. Here, each selected residue is
changed, one at a time, to alanine, allowing the estimation of
the side chain contribution to the binding. The higher affinity
of 17beta-estradiol for the antiestradiol antibody was
rationalized on the basis of hydrogen bond interactions, not
present in the other steroids.

3D-QSAR Methods

So far, all methods presented here are focused on the lead
generation problem. However, where selectivity issues
become particularly relevant is in the lead optimization
phase, when the molecular scaffold needs to be tuned to
fulfill constraints other than simply binding to the target. The
existing methods to estimate binding free energies using
macromolecular 3D structures in docking and virtual
screening cover a broad spectrum, from highly simplified
scoring functions based on properties such as surface
complementarity to more intensive Monte Carlo calculations
involving molecular mechanics potentials. In many
instances, these functions turn out to be too simplistic or
insensitive to model ligand selectivity during ligand
optimization. On the other hand, the more expensive free
energy calculations outlined in the previous paragraph, such
as those based on MM-PBSA or MM-GBSA, are too slow to
efficiently explore chemical diversity.

In these cases, when activities of a representative set of
chemical variations of the basic scaffold are available, it is
often beneficial to resort to the use of three-dimensional
quantitative structure-activity relationships (3D-QSARs).
The COMBINE approach [37] is a member of this family of
techniques. It is based on molecular mechanics energy
computations, but it is reasonably fast, and can be easily
adapted to model selectivity. The idea is that a relatively
simple expression for the differences in binding affinity of a
series of related ligand-receptor complexes can be derived by
using multivariate statistics to correlate experimental data on
binding affinities with components of the ligand-receptor
interaction energy computed from the three-dimensional
structures. Mathematically, the model derived from
COMBINE analysis can be written as:

(1)

where the binding affinity ∆G is given by the sum of
weighted changes in energy terms, plus a constant C. The
weights, wi, are obtained from PLS analysis. In its simplest
form, the one shown, just van der Waals ui

vdw and
electrostatic ui

ele interaction energy terms are employed.

When modeling selectivity with COMBINE analysis, the
chemometrics analysis is carried out with a multiple-receptor
adapted version (Fig. (2)). A structural or sequence align-
ment is first used to build a position-based X-matrix of
energy contributions. Lennard-Jones and electrostatics
ligand-receptor interaction energies per residue are computed
as usual, but introduced in a global X-matrix according to
the alignment. Gaps enter the matrix with a zero value. The
y-variable is assigned as pKi towards the appropriate
receptor.

Other 3D-QSAR methods also employed to model
selectivity are CoMFA [38] (comparative molecular field
analysis) and CoMSIA [39] (comparative molecular
similarity indices analysis). CoMFA calculates steric and
electrostatic properties according to Lennard-Jones and
Coulomb potentials in a lattice around the aligned ligands.
CoMSIA is an alternative approach where molecular
similarity is compared in terms of similarity indices,
allowing the consideration of various physicochemical
properties. In both cases, differences or ratios in these
properties are correlated with activity differences using
multivariate statistical tools. Note that, in contrast with
COMBINE, the target structure does not enter directly in the
calculation of the descriptors. The resulting contribution
maps are intuitively interpreted. They can also be used to
map and pin down those features responsible for selectivity
differences among ligands. When modeling selectivity, it is
common to analyze the pairwise selectivity, using either the
difference or ratio between biological activities (expressed as
-log Ki) of a ligand series with respect to two different
receptor types as a dependent variable. The resulting
"selectivity fields" indicate the ways of increasing selectivity
of binding, inhibition, etc… However, this type of analysis
imposes limitations in multiple receptor comparisons, as they
can only be obtained through multiple pairwise analyses,
making the procedure cumbersome. Nevertheless, CoMFA
and CoMSIA have been employed successfully to study
ligand selectivity in several cases, including serine proteases
[40,41], matrix metalloproteinases [42], nuclear receptors
[43], glycine/NMDA and AMPA receptors [44] or protein
kinases [29]. In this last case, interesting comparisons have
been carried out between CoMFA and GRID/PCA methods
(vide infra), showing good agreement with each other.

CASE EXAMPLES

Protein Kinases

This family, encoded by approximately 2% of eukaryotic
genes, is one of the largest known [2]. All protein-kinases
share a common domain (known as catalytic domain) of
about 250-300 aminoacids, with a conserved three-
dimensional structure (for a review, see Hanks [45]). These
proteins are implied in a variety of cellular processes of
signal transduction as cell growth, metabolism, differen-
tiation or apoptosis. The transduction of the signal occurs∆G = wi

vdwui
vdw

i
∑ + wi

eleui
ele

i
∑ + C
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through phosphorylation of specific aminoacidic residues
(serine, threonine or tyrosine) in the kinase substrates, being
the kinases themselves regulated by different mechanisms as
phosphorylation or interaction to subfamily-specific regula-
tory domains. Protein kinase inhibitors are potential drugs in
a number of diseases, including cancer, diabetes, inflam-
mation or arthritis [3]. The ATP binding site is generally
considered a valuable target site for binding of inhibitors,
usually competitive ones. A conceptual difficulty of this
approach resides in the fact that the ATP locus is mainly
structurally equivalent in all known kinases, and not very
different from other ATP binding proteins in the cell, which
makes difficult the design of specific compounds [4] to
inhibit the activity of selected kinases in precise signaling
pathways without modifying the behavior of the transduction
network.

Vieth et al . [46] performed a comparison of the classifi-
cation of protein kinases, both based on sequence-based
clustering, and on small molecule selectivity information,
using published experimental data. The authors investigated
in particular the kinase gatekeeper hypothesis: the residue
identified to be one of the major determinants for selectivity
in MAP kinases [47,48]. The similarity of kinase selectivity
profiles was compared with the presence of small (T, S, A,

V, C) or large aminoacids in this precise position for both, or
only one, proteins in the pair. While kinases with similar
sizes in their gatekeepers showed comparable profiles, the
available information was shown to be insuffi-cient to
explain numerically the inhibitor selectivity data. High
sequence or structural similarity implied similar trends in
ligand recognition, but the lack of sequence identity was not
necessarily related to differences in inhibitor selectivity.

On the other hand, Naumann & Matter [29], using a set
of 26 X-ray structures of different protein kinases, applied
“target family landscape analysis” to find subfamily-
specific interaction patterns in the ligand binding site. The
first principal component in the PCA analysis was able to
separate cyclin-dependent kinases (CDKs) and MAP kinases
from the big family of cAMP dependent kinases, while the
second principal component allowed differentiating MAP
kinases from CDKs. To complement their findings, the
authors performed a comparison of experimental affinities to
CDK1 with affinity predictions based on final 3D-QSAR
models of comparative molecular field analysis (CoMFA)
[38] and comparative molecular similarity index analysis
(CoMSIA) [39] for a series of 86 2,6,9-substituted purines as
CDK inhibitors, including the potent purvalanol B.
Consistent results were obtained.

Fig. (2). Modeling selectivity with COMBINE analysis[37]. Initially, the structures in the family (either experimental or modeled structures)
are structurally aligned to create a multiple structural alignment. Each ligand in the set is then docked to each one of the models. A
COMBINE analysis is then carried out, using the previously computed alignment to place the interactions with the different proteins in
register. A model of the predicted activity of each ligand in each protein is then generated, which can be assessed by comparison with
experimental data. The coefficients of the model highlight key discriminating interactions.
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p-SIFt has been applied [31] as post processing and re-
scoring tool of the 30 top solutions obtained using the
flexible docking algorithm FlexX [49] on a set of 93 X-ray
structures of 21 different protein kinases complexed with
ATP or ATP analogues and a variety of small molecule
ligands. The initial SIFt analysis resulted in the clustering of
the structures in three groups: p38 cluster (nine structures
containing different inhibitors interacting with p38 kinase),
CDK2 cluster (20 structures including CDK2 inhibitors) and
ATPg cluster (nine and sixteen structures containing ATP or
ATP analogs respectively bound to different kinases)
remaining 49 structures unclassified. The obtained clusters
were used to generate profiles to represent the degree of
interaction conservation, defining a p-SIFt from the SIFts of
those structures that were subsequently used to scoring the
ligand selectivity among clusters. The results were variable,
needed for a better definition of the p-SIFt in the case of the
small p38 cluster, although the method appeared to
discriminate correctly in the case of the larger CDK2 and
ATPg clusters.

Carnitine/Choline Acyltransferases

Based on their enzymatic activity, four subfamilies of
carnitine/choline acyltransferases can be differentiated (Fig.
(3)): the carnitine palmitoyltransferases (CPTs), subdivided
in CPT I and CPT II, are essential for mitochondrial β-
oxidation and are located in the outer and inner
mitochondrial membrane, respectively. CPT I facilitates the
transfer of long-chain fatty acids from the cytoplasm to the
mitochondrial matrix, which is the rate-limiting step in β-
oxidation [50]. Mammalian tissues express three isoforms of
CPT I, in liver (L-CPT I), muscle (M-CPT I) and brain
(CPTI-C) [51-53]. Carnitine octanoyltransferase (COT)
facilitates the transport of medium-chain fatty acids from
peroxisomes to mitochondria through the conversion of acyl-
CoAs into acylcarnitine [54]. Carnitine acetyltransferase
(CrAT) catalyzes the reversible conversion of acetyl-CoA
and carnitine to acetylcarnitine and free CoA [55,56].
Choline acetyltransferase (ChAT) catalyzes a similar
reaction to CrAT, with the exception that the acetyl group
from acetyl-CoA is transferred to choline rather than
carnitine [57]. In addition to these differences in substrate
recognition, the activity of the enzyme groups L-CPT I, M-
CPT I and COT, but not CPT II, CrAT and ChAT, is
regulated by the physiologic inhibitor malonyl-CoA [50],
being the most important regulatory step in mitochondrial
fatty acid oxidation. Understanding Malonyl-CoA selectivity
could be valuable for the treatment of disorders such as
diabetes, insulin resistance, obesity and coronary heart
disease.

Efforts have been made in the analysis of the structural
discrimination mechanism used by malonyl-CoA. In 2003,
Morillas et al. [58] performed an exhaustive analysis of
residues shared by all malonyl-CoA-regulated enzymes vs.
the malonyl-CoA nonregulated members of the family, using
the SequenceSpace algorithm [9,59,60]. Using the clusters
defined by the axes corresponding to dimensions two and
four, the authors found a group of five residues shared by all
proteins sensitive to malonyl-CoA (L-CPT I, M-CPT I and
COT), but different in the rest of the family sequences. One
of such residues, the Met593 in human L-CPT I, was

revealed as key for discriminating both groups of enzymes.
In fact, when a mutant of L-CPT I was generated by
replacing Met593 by Ser (the residue present in the non
regulated group), the sensitivity of the enzyme toward
malonyl-CoA was practically abolished (IC50 of 258 µM vs.
12.3 µM of the wild type). The position of Met593 in the 3D
structure of a model of L-CPT I localizes the residues in the
proximity of the substrate channel, explaining at least
partially the experimental results (Fig. 3). The mutant “L-
CPT I M593S” has been revealed as a powerful tool for the
study and perhaps treatment of Carnitine palmitoyl-
transferase activity-related diseases, as diabetes, where the
malonyl-CoA/CPTI interaction could be a critical step of the
metabolic signaling network that controls insulin secretion
[61].

The question related to the recognition of acyl-CoA
substrates with different lengths of acyl chain (short–acetyl:
CrAT and ChAT; medium-octanoyl: COT; large-palmitoyl:
L-CPT I, M-CPT I, CPT I-C and CPT II) was also analyzed
by the same authors [62-65], again with the aid of
SequenceSpace. The most interesting finding was the
discovery of a deep pocket, defined by the secondary
structure elements alpha helix 12 and beta strands 1, 13, and
14, which opens to the main substrate channel, likely
involved in the allocation of the long or medium acyl chains
in the CPTs or COT enzymes. Although the same pocket is
present in CrAT and ChAT enzymes, the entrance in these
two later proteins is blocked by the side chains of metionine
or cysteine residues, allowing only the entry of small acetyl
groups. In contrast, the same position is occupied by glycin
in COT and CPTs, allowing docking of larger substrates. A
CrAT mutant with Met564 replaced by glycin confirmed the
prediction: the activity of the M564G-CrAT mutant toward
long chain acyl-CoAs was 1250-fold higher than that of the
wild-type CrAT. In the reverse case, replacement of the
equivalent Gly553 in COT by metionine (G553M-COT)
resulted in markedly decreased activity toward medium and
long chain natural substrates and increased activity toward
short-chain acyl-CoAs [65].

Serine-Proteases

Trypsin-like serine proteases are a large family of
enzymes involved in the hydrolysis of peptide bonds.
Although they all act via a similar catalytic mechanism, they
have different preferences for the amino acids that they
prefer to cleave. Serine proteases play a key role in a
diversity of diseases [66]. Modest changes in sequence and
shape of their substrate binding sites confer to this class of
enzymes a wide variety of biological functions. For instance,
thrombin and fXa are prominent players in the blood clotting
cascade, while trypsin is an enzyme excreted by the pancreas
to aid in the digestion of nutrients. There is considerable
interest in the design of selective inhibitors of these
enzymes, to minimize side effects of thrombin/fXa inhibitors
and to enhance their bioavailability.

It is well known that substrate selectivity in serine-
proteases is conferred by key changes in a specificity pocket.
Three positions were proposed originally to define the
pocket. An aspartic acid found in trypsin (Asp189) is usually
replaced by a small residue in chymotrypsins (Ser) and
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Fig. (3). Sequence and structure determinants of choline/carnitine acyltransferases. A. MSA of different subfamily representatives: carnitine
palmitoyltransferase I, isoforms L (L-CPTI) and M (M-CPTI), carnitine octanoyltransferase (COT), carnitine palmitoyltransferase II (CPTII),
carnitine acetyltransferase (CrAT) and choline acetyltransferase (ChAT). Positions related to enzymatic activity are indicated: catalytic His
(a), Asp/Glu (b) and the Ser-Thr-Ser motif (c). Tree-determinants conferring differential binding properties are also highlighted: TET/VDN
motif (d) in the case of carnitine vs. choline preferences, Met vs. Ser (e) responsible for sensitivity towards malonyl-CoA and Gly vs. Met (f)
differentiating long and short acyl-CoAs. B. phylogenetic relationships among acyltransferases and their role in selectivity towards malonyl-
CoA. C. Effect of M564G mutation in the CrAT structure. Gly accommodates longer chains, changing the substrate specificity of the enzyme.
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elastases (Gly). Two positions adjacent to this in space were
originally described as defining substrate differences in these
three families: Positions 216 and 226 (in trypsin) are
generally glycine in chymotrypsins and trypsins, but
replaced by valine and threonine in elastases. Within the
trypsin family, the binding site can be divided in several
subsites (Fig. (4)): The deep hydrophobic S1 pocket, where
the conserved Asp189 forms a salt bridge with positively
charged moieties. The catalytic triad, or S2 pocket, formed
by residues His57, Asp102, and Ser195. The S3 binding
subsite, consisting of Gly216. The thrombin insertion loop,
Tyr60A-Pro60B-Pro60C-Trp60D (positions 83-86), which
forms the hydrophobic P (proximal) pocket. And the
hydrophobic distal S4 region (also called D pocket), lined by
residues 99, 174, Trp215, and Gly217 (positions 132, 215,
263, and 265 respectively).

Hannenhalli & Russell [11] applied their functional sub-
type prediction method to a multiple sequence alignment of
elastase, chymotrypsin and trypsin serin-protease sub-types.
Given the alignment and some definition of function, such as
enzymatic specificity, this method tries to identify positions
indicative of functional differences by comparison of sub-
type specific sequence profiles. The top two scoring
positions identified by the method (position 189, in bovine
trypsin, PDB code 5ptp, Z=5.6 and 226, Z=3.9) correspond
to two of the pocket positions. The third pocket position
(216) has a low Z score (1.0). Inspection of the alignment
shows that glycine is frequently tolerated in the elastases
sub-type, giving a low Z-score. The third best scoring
position (221, Z=3.6) is an Asn residue in elastases, and
generally an Ala residue in trypsins, located near to the
specificity pocket discussed above. Of the other three
positions identified only position 184 (Z=3.1) is near to the
other pocket. Here glycine, which is preferred in the
elastases may aid the recognition of small side-chains in
elastase substrates.

On the other hand, Kastenholz et al. [28] studied the
problem of ligand selectivity in serin-proteases using the
GRID/CPCA method. The results for the GRID/CPCA
selectivity were found to be in excellent agreement with the
experimental data on selectivity in the thrombin/
trypsin/factor Xa system. Thus, the method finds that the S1
pocket, in spite of having mainly conserved residues, can be
used on its own to drive selectivity. In the P pocket, the
method predicts that hydrophobic moieties should enhance
selectivity for thrombin. The D pocket can also be used to
drive selectivity of potential protease inhibitors, especially
for the design of selective factor Xa inhibitors, which can
take advantage of the interaction properties of the
hydrophobic box in factor Xa to accommodate cationic
functional groups. Additional residues in the primed side
were selected, but not discussed.

Murcia et al. have applied COMBINE analysis [37,67] to
explain the origin of selectivity of a series of
amidinophenylalanines binding to Thrombin, fXa and
trypsin (Murcia et al. submitted) (Fig. (5)). COMBINE
analysis selects residues in the S1 pocket, as well as the D-
pocket; the S2 region; the interaction with the backbone
through residue Gly216 (S3 pocket), and the thrombin

Fig. (4).  An overview of the binding site properties of the trypsin-
like serine-protease family. The solvent accessible surface for three
members -trypsin, factor Xa and thrombin- is shown, colored by the
secondary structure of the corresponding residue. Three main
subsites of the ligand binding site are highlighted: the S1 subsite,
formed by a deep, narrow pocket where the conserved Asp189
forms a salt bridge with positively charged moieties; the D (distal)
pocket, lined mainly by aromatic residues and particularly evident
in factor Xa, to a minor extent for trypsin, and absent in thrombin;
and the P (proximal) pocket, particularly evident in thrombin due to
the insertion loop Tyr60A-Pro60B-Pro60C-Trp60D, to a minor
extend in factor Xa and absent in trypsin. Two additional subsites,
S2 and S3, are not shown for clarity reasons. These are forming the
rim of the S1 pocket. See text for additional details. Figure
generated with PyMol [87].

exclusive 60-loop (P pocket). COMBINE suggests that
selectivity can be largely explained by a handful of VDW
interactions, along with a few desolvation energies. For
example, the model predicts that ligands with hydrophobic
moieties occupying the P pocket should be selective towards
thrombin. Similarly, negative charge density in the
neighborhood of position 88 (a lysine insertion in thrombin)
should be a determinant for thrombin recognition. On the
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other hand, fXa selectivity is enhanced by ligands able to
desolvate residues at the entrance of the so-called D-box, and
by molecules able to harbor negative charge density in the
neighborhood of position 238, where thrombin has a
glutamic acid residue, while fXa has a glutamine.

TECHNICAL CONSIDERATIONS

Sequence Analysis

A major problem of sequence space based methods is the
quality of the multiple sequence alignments [68,69]. On the
one hand, artifacts can be introduced by the heterogeneity of
the sequence distributions within the subclasses, with over-
represented groups can dominating the alignment [70]. In
other cases, protein subfamilies can be composed of
sequences too similar or too dissimilar. These deviations
from homogeneity can cause practical problems in
differentiating residues that are conserved for functional
reasons from others that are only apparently conserved due
to different artifacts of the distribution of sequences within
protein families. An additional problem comes from the
quality of the alignment itself. Introduction of structural
information in the alignment process has been shown to be
beneficial [71].

Modeling Protein Structures

Clearly, both the detection of selectivity sites within
protein families and the computational search for putative
selective ligands by virtual screening require, in most cases,
of the ability to generate high quality homology models for
some of the members in the protein family. Recent studies

have shown that while homology models are useful in virtual
screening, improvements in their quality are still required
[72]. CASP competitions have consistently shown that
alignment errors and inefficient structural refinement are two
of the main factors precluding the derivation of the high
accuracy models needed for drug design [73]. Considerable
research efforts are underway to resolve these difficulties.
Strategies based on the combination of several templates and
alignment methods can improve the alignment quality,
particularly for remote homologies [74]. Profile-profile
alignments, with [22] or without [75] the use of structural
information have also been shown to be powerful
approaches. On the other hand, structural refinement has
been shown to benefit from the use of evolutionary
information: applying PCA to multiple structural alignments
allows defining a small number of favored evolutionary
directions of structural adaptation, where an efficient
sampling of the conformational space accessible to the
model is possible [76]. Applications of these new structure
prediction techniques to the virtual screening scenario have
not been reported yet.

When known binders are available, as it happens during
the lead optimization step, it is possible to improve the
quality of the homology models by demanding self-
consistency in the ligand-receptor complexes. Klebe and
coworkers have pioneered this approach by refining
iteratively homology models using ligand information [77-
79]. The procedure starts with the known structure of one or
more templates, from which several preliminary homology
models of the target are generated. Ligands are then docked
into an averaged binding-site representation of the binding-

Fig. (5). COMBINE analysis of serin-proteases. Predicted versus experimental affinities for a set of amidinophenylalanines binding to
thrombin, factor Xa and trypsin (Murcia et al., submitted). See text for details.
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site models, and new homology models are obtained
considering explicitly the docked ligands by transforming
the ligand information into user-defined restraints. Ligand-
supported homology models are selected as the ones that
best explain the observed ligand-binding affinities.

Protein Flexibility in Docking

Improvements in our ability to model selectivity are
necessarily is based on our ability to faithfully model the
protein-ligand recognition process. Protein flexibility is
essential in this process. Initial attempts to consider protein
flexibility in docking used modified energy functions with
soft van der Waals interactions (soft docking). However, it
has been shown that this approximation is too crude, and that
a more realistic treatment is to consider explicitly the
conformational degrees of freedom of the receptor [80].
During the last few years a deeper understanding of how
these conformational degrees of freedom change during the
“induced-fit” process has started to emerge. Zoete et al.
[81], for example, compared, for the HIV-1 protease,
fluctuations of selected regions calculated with molecular
dynamics simulations [82] and normal mode analysis [83],
and compared them with knowledge-based fluctuations
computed from a set of experimental X-ray structures,
focusing mainly on the backbone. The root-mean-square
differences observed for the set of structures were shown to
have the same variation with residue number as those
obtained from molecular dynamics simulations and normal
mode analyses, suggesting that both theoretical methods can
be useful to model these shifts. In a complementary study,
Zavodszky et al. [84] selected complexes that do not
undergo major main-chain conformational changes upon
ligand binding, and studied instead the side chain
fluctuations. The authors found that most side chains do not
shift to a new rotamer, and that only small motions are both
necessary and sufficient to predict the correct binding
orientation of the ligand for most complexes in their dataset.
These and similar studies are providing insights for the
development of better models to account for receptor
flexibility in docking, most of them using discrete receptor
conformations. For example, Cavasotto & Abagyan [85]
have proposed to use a discrete set conformations that
consider both side-chain rearrangements and essential
backbone movements, and performed flexible ligand-rigid
receptor docking and scoring followed by a merging and
shrinking step to condense the resulting multiple virtual
screening lists in a single one. Similarly, Wei et al. [86]
considered a method that treats multiple flexible regions of
the binding site independently, recombining them to generate
different discrete conformations to be used in docking. Their
approach improved enrichment of known ligands when a
receptor conformational energy weighting term was included
in the scoring function, pointing to the need to consider the
protein energetics if the receptor degrees of freedom are
allowed to vary. This can be implicitly considered by
structural sampling with molecular dynamics in absence of
the ligand. Meagher & Carlson [87] used this approximation
to build pharmacophores for the free HIV-1 protease. The
pharmacophore models successfully discriminated known
inhibitors from drug-like non-inhibitors.

FUTURE DIRECTIONS

Systems Biology

Pathway information could become useful in the future to
help predicting drug-specificity problems [88]. A good
example of its potential is the case of the phosphodiesterase
(PDE) inhibitor Viagra (Sidenafil). Originally designed to
target PDE-5 and promote relaxation of smooth muscle, the
compound also binds to the homologous PDE-6 in the eye,
which leads to “blue vision” in patients, a well-documented
side effect difficult to detect in animals. However, sequence
searches in pathway collections are able to find these two
enzymes as cross-related and are able to infer the likely
effects of blocking them [88]. If situations like this one are
identified early, efforts can be made to design more selective
compounds, and thus potentially avoid problems because of
this cross-reactivity. Adequately combined with the
computational tools discussed in this review, these
approaches could in the future be used not only to find
putative competitors, but also to predict the likely biological
result of such cross-reactivity.

Chemogenomics

One of the major bottlenecks for the consideration of
selectivity early on in a drug discovery research program is
the requirement to measure ligand affinities in a high-
throughput manner, for a large number of ligands and in a
large number of targets. In an important step forward, Fabian
et al. [89] have recently described an efficient way to
experimentally generate systematic small molecule-protein
interaction maps across a large number of related proteins.
The key of this new technique is to make use of phage-
tagged proteins to circumvent the need for conventional
protein production and purification. The tagged proteins and
immobilized “bait” ligands are combined with a “free” test
compound. If the test compound does not compete
efficiently with the “bait” ligand for the protein, the tagged
protein remains bound to the solid support. The amount of
fusion protein bound to the support is measured by
quantitative PCR using the phage DNA as a template. As an
application, the authors profiled 20 kinase inhibitors against
a panel of 119 protein kinases. Interestingly, the authors
found that specificity varies widely and is not strongly
correlated neither with chemical structure of the ligand nor
the identity of the intended target: specificity was shown to
vary substantially even among compounds based on the
same chemical scaffold, and at the same time, there were
many examples of off-targets not closely related by sequence
and function to the intended one. This ability to rapidly
screen compounds against multiple targets in parallel,
blended with the computational methods for specificity
profiling discussed in this review, should greatly facilitate
and accelerate the drug development process.

CONCLUDING REMARKS

We have surveyed a variety of computational approaches
to study the problem of ligand selectivity from different
angles. A common theme is the study of factors related to the
differential interactions of the ligands with their binding
sites, and how these can be unveiled and modeled. However,
it is obvious that the target selectivity of a ligand is not only
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controlled by details of these interactions, but also involves
other factors such as pharmacokinetics, protein environment,
differential gene expression, etc… Since, it is helpful to
characterize the peculiarities of drug-receptor interactions in
the family or subfamily of the target, and use these insights
together with other approaches to model more selective
ligands. Our survey suggests that the structure-based
approach is maturing rapidly and will likely play a
significant role in the near future.
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